首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Many advances have been taken on elucidating embryonic development and tissue homeostasis and repair by the use of experimental strategies that preserve the three‐dimensional (3D) organization and allow quantitative analysis of images over time (four‐dimensional). Ranging from the understanding about the relationship between blastomeres and the events that take place during gastrulation by the use of time‐lapse imaging through 3D cultures that mimic organogenesis, the advances in this area are of critical value. The studies on embryonic development without disrupting the original architecture and the development of 3D organoid cultures pave a new avenue for unprecedented experimental advances that will positively impact the emergence of new treatments applying regenerative principles for both tissue repair and organ transplant. Birth Defects Research (Part C) 105:1–8, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
采用组织学方法观察了胭脂鱼(Myxocyprinus asiaticus) 眼的发生过程, 结果显示: 胭脂鱼眼的发育经历了眼原基形成期、眼囊形成期、视杯形成期、晶体板形成期、晶体囊形成期、角膜原基形成期、角膜上皮形成期、视网膜细胞增殖期、晶状体成熟期、眼色素形成期以及眼成型期等11个时期。视网膜发育最早, 起始于眼原基的形成, 直至眼成型期分化完成, 形成了厚度不一的8层细胞, 由内向外依次为神经纤维层、神经细胞层、内网层、内核层、外网层、外核层、视杆视锥层和色素上皮层, 且发育历时最长, 约264h。晶状体的发育在视网膜之后, 始于晶体板的形成, 于出膜前期成熟, 发育历时最短, 约74h。角膜发育最晚, 始于角膜原基的形成, 出膜1 d分化为透明的成熟角膜, 发育历时约96h。出膜4 d仔鱼眼色素沉积明显, 视网膜各层分化明显, 晶状体内部完全纤维化, 眼的形态结构基本发育完全。  相似文献   

3.
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.  相似文献   

4.
Morphogenesis is the process whereby cells assemble into tissues and organs. Recent studies of this process have revealed heterogeneity of individual cell behaviours that contrasts with the deterministic activity of tissues as a whole. Here we review these observations and suggest that fluctuations and heterogeneities are a central substrate for morphogenesis and that there might exist mechanisms dedicated to the averaging of these fluctuations to ensure robust and reproducible behaviours at the tissue level.  相似文献   

5.
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell–ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell–ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell–ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this “extracellular matrix dimension” should be added to our conceptual network of factors contributing to skeletal myogenesis.  相似文献   

6.
详细观察和描述了稀有鮈鲫眼发育的形态变化,并分别对视网膜发育早期神经层、色素上皮层的厚度及眼发育后期视网膜的总厚度进行了测量。结果表明:稀有鲫眼的发生始于神经胚时期形成的眼原基,与两栖、哺乳类动物不同,其眼原基是由间脑向左右伸出的对称外突实体;在尾芽期眼原基向腹侧弯曲、侧向伸长,随后开始内陷,在尾泡期形成视杯。眼原基外层与外胚层紧贴的部分将发育为视杯的内层、神经视网膜,而眼原基其余部分将分化为视杯的外层、视网膜色素层。在尾泡期之后,视网膜色素层停止有丝分裂开始形成色素颗粒,此时视网膜神经层开始分化。视网膜这两层结构在发育早期分化的有序进行可能与早期胚胎头部内空间以及附近的间充质细胞有关。从神经胚期到尾泡期,视网膜色素层厚度由42.3±0.8μm减小到4.8±0.4μm,视网膜神经层厚度从37.1±0.2μm增加到43.7±0.6μm,而从尾鳍期到孵出期视网膜总厚度从42.7±1.2μm逐渐增加到98.3±2.1μm。与所有脊椎动物一样,稀有鲫眼的视网膜分化也是按照由内向外的顺序进行,晶状体、角膜及其他结构在孵出时已基本发育完全。  相似文献   

7.
    
In 2016 and 2017, the 8th and 9th 4D treatment planning workshop took place in Groningen (the Netherlands) and Vienna (Austria), respectively. This annual workshop brings together international experts to discuss research, advances in clinical implementation as well as problems and challenges in 4D treatment planning, mainly in spot scanned proton therapy. In the last two years several aspects like treatment planning, beam delivery, Monte Carlo simulations, motion modeling and monitoring, QA phantoms as well as 4D imaging were thoroughly discussed.This report provides an overview of discussed topics, recent findings and literature review from the last two years. Its main focus is to highlight translation of 4D research into clinical practice and to discuss remaining challenges and pitfalls that still need to be addressed and to be overcome.  相似文献   

8.
Genetic screens in zebrafish identified several loci that play essential roles in the patterning of retinal architecture. Here, we show that one of them, glass onion, encodes the N-cadherin gene. The glo(m117) mutant allele contains a substitution of the Trp2 residue known for its essential role in the adhesive properties of classic cadherins. Both the glo(m117) and pac(tm101b) mutant N-cadherin alleles affect the polarity of the retinal neuroepithelial sheet and, unexpectedly, both result in cell-nonautonomous phenotypes in retinal patterning. The late onset of mutant N-cadherin phenotypes may be due to the ability of classic cadherins to substitute each other's function.  相似文献   

9.
Correct cellular patterning is central to tissue morphogenesis, but the role of epithelial junctions in this process is not well-understood. The Drosophila pupal eye provides a sensitive and accessible model for testing the role of junction-associated proteins in cells that undergo dynamic and coordinated movements during development. Mutations in polychaetoid (pyd), the Drosophila homologue of Zonula Occludens-1, are characterized by two phenotypes visible in the adult fly: increased sensory bristle number and the formation of a rough eye produced by poorly arranged ommatidia. We found that Pyd was localized to the adherens junction in cells of the developing pupal retina. Reducing Pyd function in the pupal eye resulted in mis-patterning of the interommatidial cells and a failure to consistently switch cone cell contacts from an anterior-posterior to an equatorial-polar orientation. Levels of Roughest, DE-Cadherin and several other adherens junction-associated proteins were increased at the membrane when Pyd protein was reduced. Further, both over-expression and mutations in several junction-associated proteins greatly enhanced the patterning defects caused by reduction of Pyd. Our results suggest that Pyd modulates adherens junction strength and Roughest-mediated preferential cell adhesion.  相似文献   

10.
We previously showed that CD4 binding induced a down-regulation of LFA-1-dependent-antigen-independent adhesion of T and B lymphocytes in a phosphatidylinositol-3-kinase (PI3K)-dependent manner. We now show in A201-CD4 (+) T cell lines, that anti-CD4 Ab increases activation of phosphoinositide-dependent-protein-kinase 1 (PDK1) or PKC zeta, two main effectors down-stream from PI3K. CD4 binding also increases interactions between PI3K and activated PKCzeta and PDK1. Both events are dependent on CD4/p56Lck association, since they are not detected when p56Lck is unable to bind a truncated form of CD4 in transfected T cell lines. We also show using antisense oligonucleotides that both kinases are necessary for down-regulating LFA-1-dependent adhesion induced by CD4 signalling. We also suggest a role of PDK1 in the recruitment of the phosphatase SHP-2 in a multiprotein complex induced by anti-CD4 Ab. This study thus provides further insights into the mechanism underlying the CD4 triggered regulation of LFA-1-mediated adhesion.  相似文献   

11.
脊椎动物发育生物学的研究通常依赖于数量有限的模式生物的形态变化,胚胎发育分期表的建立为物种胚胎发育的一系列过程确立了一个统一的标准,成为研究形态演化的重要工具。本研究对多疣壁虎(Gekko japonicus)28℃孵化条件下的胚胎发育过程进行显微观察,并记录了整个胚胎发育历程。基于多疣壁虎胚胎发育过程中头部、咽、四肢等形态变化及皮肤色素沉积和被鳞的情况,将多疣壁虎胚胎发育分为42个时期。刚排出体外的受精卵,其胚胎发育一般已经发生至28期,该期胚胎头部和躯干分化明显,眼泡、咽弓、心和体节可见;29期前、后肢芽均可见;30期肢芽延长并开始出现分区,31期可见明显肢身,32期四肢均出现肢柱和肢杆的分区;33期咽裂消失,指和趾开始显现;35期指和趾间带退化,指和趾完全形成;36期出现爪;37期爪完全形成;38期皮肤色素沉积明显;39期指、趾底部膨大,形成单行攀瓣;40期身体背部和四肢色素沉积且被鳞明显;41期腹部出现色素沉积且被覆鳞片。42期鼻孔开放,体背整体呈灰棕色。对多疣壁虎卵产出后胚胎28~42期发育期形态学变化进行了详细描述,旨在为蜥蜴类胚胎发育研究提供参考。  相似文献   

12.
Regulation of cellular adhesion and cytoskeletal dynamics is essential for neurulation, though it remains unclear how these two processes are coordinated. Members of the Ena/VASP family of proteins are localized to sites of cellular adhesion and actin dynamics and lack of two family members, Mena and VASP, in mice results in failure of neural tube closure. The precise mechanism by which Ena/VASP proteins regulate this process, however, is not understood. In this report, we show that Xenopus Ena (Xena) is localized to apical adhesive junctions of neuroepithelial cells during neurulation and that Xena knockdown disrupts cell behaviors integral to neural tube closure. Changes in the shape of the neural plate as well as apical constriction within the neural plate are perturbed in Xena knockdown embryos. Additionally, we demonstrate that Xena is essential for cell-cell adhesion. These results demonstrate that Xena plays an integral role in coordinating the regulation of cytoskeletal dynamics and cellular adhesion during neurulation in Xenopus.  相似文献   

13.
    
Ha HY  Kim JB  Cho IH  Joo HJ  Kim KS  Lee KW  Sunwoo H  Im JY  Lee JK  Hong JH  Han PL 《Proteomics》2008,8(5):1071-1080
  相似文献   

14.
卢丽  史新柏 《动物学报》1991,37(4):408-421
为了澄清棘尾虫接合期间大核对小核发育和皮层形态发生的作用,完成了大核摘除,放线菌素D处理,H~3-尿嘧啶核苷标记等实验。摘核实验证明,一个接合体的大核可以通过细胞质桥支持另一除去大核的接合体发育。即使保留接合对大核总数的1/8,这种支持作用仍然存在。还发现来自大核的支持物作用于形态发生更易于作用于小核发育,并对两个接合体的形态发生作用相等,对两个接合体小核发育的作用不等。摘除四分之三大核的实验证明,小核发育和皮层更新在接合后15小时内都不能脱离对残留大核的依赖。放线菌素D处理实验证明,接合后RNA的合成需积累到8.5小时,才可满足核与皮层发育的需要。H~3-尿嘧啶核苷标记实验也支持接合后前9小时内RNA都在持续合成的结论。本文对摘核实验和放线菌素D处理实验结果的差别、以及本文结果与前人结果的差别都做了讨论。  相似文献   

15.
The vertebrate heart undergoes early complex morphologic events in order to develop key cardiac structures that regulate its overall function (Fahed et al., 2013). Although many genetic factors that participate in patterning the heart have been elucidated (Tu and Chi, 2012), the cellular events that drive cardiac morphogenesis have been less clear. From a chemical genetic screen to identify cellular pathways that control cardiac morphogenesis in zebrafish, we observed that inhibition of the Rho signaling pathways resulted in failure to form the atrioventricular canal and loop the linear heart tube. To identify specific Rho proteins that may regulate this process, we analyzed cardiac expression profiling data and discovered that RhoU was expressed at the atrioventricular canal during the time when it forms. Loss of RhoU function recapitulated the atrioventricular canal and cardiac looping defects observed in the ROCK inhibitor treated zebrafish. Similar to its family member RhoV/Chp (Tay et al., 2010), we discovered that RhoU regulates the cell junctions between cardiomyocytes through the Arhgef7b/Pak kinase pathway in order to guide atrioventricular canal development and cardiac looping. Inhibition of this pathway resulted in similar underlying cardiac defects and conversely, overexpression of a PAK kinase was able to rescue the loss of RhoU cardiac defect. Finally, we found that Wnt signaling, which has been implicated in atrioventricular canal development (Verhoeven et al., 2011), may regulate the expression of RhoU at the atrioventricular canal. Overall, these findings reveal a cardiac developmental pathway involving RhoU/Arhgef7b/Pak signaling, which helps coordinate cell junction formation between atrioventricular cardiomyocytes to promote cell adhesiveness and cell shapes during cardiac morphogenesis. Failure to properly form these cell adhesions during cardiac development may lead to structural heart defects and mechanistically account for the cellular events that occur in certain human congenital heart diseases.  相似文献   

16.
    
Revealing the true structure of tissues and organs with tissue slicing technology is difficult since images reconstructed in three dimensions are easily distorted. To address the limitations in tissue slicing technology, tissue clearing has been invented and has recently achieved significant progress in three-dimensional imaging. Currently, this technology can mainly be divided into two types: aqueous clearing methods and solvent-based clearing methods. As one of the important parts of this technology, organic solvent-based tissue clearing techniques have been widely applied because of their efficient clearing speed and high clearing intensity. This review introduces the primary organic solvent-based tissue clearing techniques and their applications.  相似文献   

17.
    
The Pax-6 protein is vital for eye development in all seeing animals, from sea urchins to humans. Either of the Pax6 genes in Drosophila (twin of eyeless and eyeless) can induce a gene cascade leading to formation of entire eyes when expressed ectopically. The twin of eyeless (toy) gene in Drosophila is expressed in the anterior region of the early fly embryo. At later stages it is expressed in the brain, ventral nerve cord and (eventually) the visual primordium that gives rise to the eye-antennal imaginal discs of the larvae. These discs subsequently form the major part of the adult head, including compound eyes. We have searched for genes that are required for normal toy expression in the early embryo to elucidate initiating events of eye organogenesis. Candidate genes identified by mutation analyses were subjected to further knock-out and miss-expression tests to investigate their interactions with toy. Our results indicate that the head-specific gap gene empty spiracles can act as a repressor of Toy, while ocelliless (oc) and spalt major (salm) appear to act as positive regulators of toy gene expression.  相似文献   

18.
Angiogenesis is critical for many physiological and pathological processes. To identify molecules relevant to angiogenesis, we performed a proteomic screen comparing invading versus non-invading endothelial cells in three-dimensional collagen matrices. We found up-regulated levels of receptor for activated C kinase 1 (RACK1) and the intermediate filament protein vimentin that correlated with increased endothelial cell invasion. Because both RACK1 and vimentin have been linked to focal adhesion kinase (FAK), we investigated whether this pathway regulated invasion. RACK1 depletion reduced invasion responses, and this was associated with attenuated activation of FAK. Knockdown of vimentin significantly decreased levels of phosphorylated and total FAK. Treatment with a pharmacological inhibitor of FAK dose-dependently reduced invasion, indicating a crucial role for FAK activity during invasion. Because RACK1 and vimentin were both up-regulated with sphingosine 1-phosphate treatment, required for invasion, and regulated FAK, we tested whether they complexed together. RACK1 complexed with vimentin, and growth factors enhanced this interaction. In addition, RACK1, vimentin, and FAK formed an intermolecular complex in invading endothelial cultures in three dimensions in response to stimulation by sphingosine 1-phosphate and growth factors. Moreover, depletion of RACK1 decreased the association of vimentin and FAK, suggesting that RACK1 was required for stabilizing vimentin-FAK interactions during sprouting. Silencing of vimentin and RACK1 decreased cell adhesion and focal contact formation. Taken together, these results demonstrate that proangiogenic signals converge to enhance expression and association of RACK1 and vimentin, which regulated FAK, resulting in successful endothelial sprout formation in three-dimensional collagen matrices.  相似文献   

19.
20.
    
Three‐dimensional (3D) microtissues, cultured in microfluidic platforms, enable to study complex biological mechanisms that cannot be replicated in two‐dimensional cell cultures. Deeper insights can be obtained if these 3D culture systems are rendered compatible with high‐resolution time‐lapse imaging systems, which requires precise placement and immobilization of the specimen while ensuring high viability and functionality of the 3D cell constructs. This article presents a versatile microfluidic platform for long‐term culturing and analysis of 3D microtissues. The platform is compatible with time‐lapse high‐resolution confocal microscopy. Hanging hydrogel drops enable the precise placement and stable immobilization of the microtissues in the microfluidic chip. The chip includes perfusion capability to apply drugs, staining and clearing solutions. The features of the chip are demonstrated by studying (i) colon cancer microtissues to monitor tissue growth and cell death; on‐chip clearing was used to augment the penetration depth for endpoint imaging; (ii) primary human liver microtissues were exposed to cytochalasin D to observe its effect on the bile canaliculi. The results obtained with both sample types demonstrate the suitability of the system for investigating complex processes in organotypic 3D microtissues, down to single‐cell level, and for observation of physiologically relevant processes at subcellular scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号