首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Attenuation of RAS/RAF/MAPK signalling is essential to prevent hyperactivation of this oncogenic pathway. In C. elegans, the sumoylation pathway and a combination of histone tail modifications regulate gene expression to attenuate the LET-60 (RAS) signalling pathway. We hypothesised that a number of chromatin regulators are likely to depend on sumoylation to attenuate the pathway. To reveal these, we designed an RNAi-based dimorphic genetic screen that selects candidates based on their ability to act as enhancers of a sumo mutant phenotype, such interactions would suggest that the candidates may be physically associated with sumoylation. We found 16 enhancers, one of which BET-1, is a conserved double bromodomain containing protein. We further characterised BET-1 and showed that it can physically associate with SMO-1 and UBC-9, and that it can be sumoylated in vitro within the second bromodomain at lysine 252. Previous work has shown that BET-1 can bind acetyl-lysines on histone tails to influence gene expression. In conclusion, our screening approach has identified BET-1 as a Sumo-dependent attenuator of LET-60-mediated signalling and our characterisation suggests that BET-1 can be sumoylated.  相似文献   

3.
4.
Tumor cells often encounter hypoglycemic microenvironment due to rapid cell expansion. It remains elusive how tumors reprogram the genome to survive the metabolic stress. The tumor suppressor TIP60 functions as the catalytic subunit of the human NuA4 histone acetyltransferase (HAT) multi-subunit complex and is involved in many different cellular processes including DNA damage response, cell growth and apoptosis. Attenuation of TIP60 expression has been detected in various tumor types. The function of TIP60 in tumor development has not been fully understood. Here we found that suppressing TIP60 inhibited p53 K120 acetylation and thus rescued apoptosis induced by glucose deprivation in hepatocellular cancer cells. Excitingly, Lys-104 (K104), a previously identified lysine acetylation site of TIP60 with unknown function, was observed to be indispensable for inducing p53-mediated apoptosis under low glucose condition. Mutation of Lys-104 to Arg (K104R) impeded the binding of TIP60 to human NuA4 complex, suppressed the acetyltransferase activity of TIP60, and inhibited the expression of pro-apoptotic genes including NOXA and PUMA upon glucose starvation. These findings demonstrate the critical regulation of TIP60/p53 pathway in apoptosis upon metabolic stress and provide a novel insight into the down-regulation of TIP60 in tumor cells.  相似文献   

5.
6.
Eaf1 (for Esa1-associated factor 1) and Eaf2 have been identified as stable subunits of NuA4, a yeast histone H4/H2A acetyltransferase complex implicated in gene regulation and DNA repair. While both SWI3-ADA2-N-CoR-TF IIIB domain-containing proteins are required for normal cell cycle progression, their depletion does not affect the global Esa1-dependent acetylation of histones. In contrast to all other subunits, Eaf1 is found exclusively associated with the NuA4 complex in vivo. It serves as a platform that coordinates the assembly of functional groups of subunits into the native NuA4 complex. Eaf1 shows structural similarities with human p400/Domino, a subunit of the NuA4-related TIP60 complex. On the other hand, p400 also possesses an SWI2/SNF2 family ATPase domain that is absent from the yeast NuA4 complex. This domain is highly related to the yeast Swr1 protein, which is responsible for the incorporation of histone variant H2AZ in chromatin. Since all of the components of the TIP60 complex are homologous to SWR1 or NuA4 subunits, we proposed that the human complex corresponds to a physical merge of two yeast complexes. p400 function in TIP60 then would be accomplished in yeast by cooperation between SWR1 and NuA4. In agreement with such a model, NuA4 and SWR1 mutants show strong genetic interactions, NuA4 affects histone H2AZ incorporation/acetylation in vivo, and both preset the PHO5 promoter for activation. Interestingly, the expression of a chimeric Eaf1-Swr1 protein recreates a single human-like complex in yeast cells. Our results identified the key central subunit for the structure and functions of the NuA4 histone acetyltransferase complex and functionally linked this activity with the histone variant H2AZ from yeast to human cells.  相似文献   

7.
8.
9.
10.
11.
12.
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX‐1, RBR‐2, LSD‐1, and T26A5.5. Interestingly, UTX‐1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx‐1 knockdown and heterozygous mutation of utx‐1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX‐1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin‐FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX‐1 as a novel regulator of worm lifespan in somatic cells.  相似文献   

13.
Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3′UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2′-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.  相似文献   

14.
15.
16.
Cellular identity during metazoan development is maintained by epigenetic modifications of chromatin structure brought about by the activity of specific proteins which mediate histone variant incorporation, histone modifications, and nucleosome remodeling. HP1 proteins directly influence gene expression by modifying chromatin structure. We previously showed that the Caenorhabditis elegans HP1 proteins HPL-1 and HPL-2 are required for several aspects of post-embryonic development. To gain insight into how HPL proteins influence gene expression in a developmental context, we carried out a candidate RNAi screen to identify suppressors of hpl-1 and hpl-2 phenotypes. We identified SET-2, the homologue of yeast and mammalian SET1, as an antagonist of HPL-1 and HPL-2 activity in growth and somatic gonad development. Yeast Set1 and its mammalian counterparts SET1/MLL are H3 lysine 4 (H3K4) histone methyltransferases associated with gene activation as part of large multisubunit complexes. We show that the nematode counterparts of SET1/MLL complex subunits also antagonize HPL function in post-embryonic development. Genetic analysis is consistent with SET1/MLL complex subunits having both shared and unique functions in development. Furthermore, as observed in other species, we find that SET1/MLL complex homologues differentially affect global H3K4 methylation. Our results suggest that HP1 and a SET1/MLL-related complex may play antagonistic roles in the epigenetic regulation of specific developmental programs.  相似文献   

17.
18.
19.
The conserved DPY-30 is an essential component of the dosage compensation complex that balances the X-linked gene expression by regulation of the complex formation in Caenorhabditis elegans. The human DPY-30-like protein (DPY-30L) homolog is a conserved member of certain histone methyltransferase (HMT) complexes. In the human MLL1 (mixed-lineage leukemia-1) HMT complex, DPY-30L binds to the BRE2 homolog ASH2L in order to regulate histone 3-lysine 4 trimethylation. We have determined the 1.2-Å crystal structure of the human DPY-30L C-terminal domain (DPY-30LC). The DPY-30LC structure, harboring the conserved DPY-30 motif, is composed of two α-helices linked by a sharp loop and forms a typical X-type four-helix bundle required for dimer formation. DPY-30LC dimer formation is largely mediated by an extensive hydrophobic interface with some additional polar interactions. The oligomerization of DPY-30LC in solution, together with its reported binding to ASH2L, leads us to propose that the hydrophobic surface of the dimer may provide a platform for interaction with ASH2L in the MLL1 HMT complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号