首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.  相似文献   

2.
Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture) and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininβ1 or lamininγ1 contrast with later dystrophic phenotypes in lamininα2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length.  相似文献   

3.
Nicotinamide adenine dinucleotide (NAD(+)) is both a coenzyme for hydride-transfer enzymes and a substrate for NAD(+)-consuming enzymes, which include ADP-ribose transferases, poly(ADP-ribose) polymerases, cADP-ribose synthases and sirtuins. Recent results establish protective roles for NAD(+) that might be applicable therapeutically to prevent neurodegenerative conditions and to fight Candida glabrata infection. In addition, the contribution that NAD(+) metabolism makes to lifespan extension in model systems indicates that therapies to boost NAD(+) might promote some of the beneficial effects of calorie restriction. Nicotinamide riboside, the recently discovered nucleoside precursor of NAD(+) in eukaryotic systems, might have advantages as a therapy to elevate NAD(+) without inhibiting sirtuins, which is associated with high-dose nicotinamide, or incurring the unpleasant side-effects of high-dose nicotinic acid.  相似文献   

4.
NAD biosynthesis is of substantial interest because of its important roles in regulating various biological processes. Nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3) is considered a mitochondria-localized NAD synthesis enzyme involved in de novo and salvage pathways. Although the biochemical properties of Nmnat3 are well documented, its physiological function in vivo remains unclear. In this study, we demonstrated that Nmnat3 was localized in the cytoplasm of mature erythrocytes and critically regulated their NAD pool. Deficiency of Nmnat3 in mice caused splenomegaly and hemolytic anemia, which was associated with the findings that Nmnat3-deficient erythrocytes had markedly lower ATP levels and shortened lifespans. However, the NAD level in other tissues were not apparently affected by the deficiency of Nmnat3. LC-MS/MS-based metabolomics revealed that the glycolysis pathway in Nmnat3-deficient erythrocytes was blocked at a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step because of the shortage of the coenzyme NAD. Stable isotope tracer analysis further demonstrated that deficiency of Nmnat3 resulted in glycolysis stall and a shift to the pentose phosphate pathway. Our findings indicate the critical roles of Nmnat3 in maintenance of the NAD pool in mature erythrocytes and the physiological impacts at its absence in mice.  相似文献   

5.
The NAD pools of Xenopus laevis oocytes and early embryos can be radioactively labelled by microinjection of [adenine- 3H]NAD. This technique is used to study the metabolism of NAD in oocytes and during early development. The rate at which NAD is degraded in vivo has been monitored by determining the rate of transfer of adenine residues from the NAD pool into other nucleotides and polynucleotides. In oocytes, NAD turnover is extremely slow, with a half-life of about 400 h. NAD turnover increases dramatically after fertilisation, and the half-life of the compound decreases to 37 h in 5-h-old embryos and to 10 h in 40-h-old embryos. 2 mM 3-aminobenzamide, a specific inhibitor of poly(ADP-ribose) polymerase, reduces the NAD turnover rate by about 20%, whereas 5 mM isonicotinic acid hydrazide, a specific inhibitor of NAD glycohydrolase, produces no significant inhibition. This indicates that a significant fraction of the considerable NAD turnover observed involves poly(ADP-ribose) polymerase. Our results indicate that poly(ADP-ribose) polymerase is active during early development and suggest that this activity may be involved in one or more aspects of the nuclear metabolism of the embryo.  相似文献   

6.

Background

Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that is currently investigated as an important target to extend lifespan and health span. Age-related NAD+ depletion due to the accumulation of oxidative stress is associated with reduced energy production, impaired DNA repair and genomic instability.

Scope of review

NAD+ levels can be elevated therapeutically using NAD+ precursors or through lifestyle modifications including exercise and caloric restriction. However, high amounts of NAD+ may be detrimental in cancer progression and may have deleterious immunogenic roles.

Major conclusions

Standardized quantitation of NAD+ and related metabolites may therefore represent an important component of NAD+ therapy.

General significance

Quantitation of NAD+ may serve dual roles not only as an ageing biomarker, but also as a diagnostic tool for the prevention of malignant disorders.  相似文献   

7.
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.  相似文献   

8.
Bieganowski P  Brenner C 《Cell》2004,117(4):495-502
NAD+ is essential for life in all organisms, both as a coenzyme for oxidoreductases and as a source of ADPribosyl groups used in various reactions, including those that retard aging in experimental systems. Nicotinic acid and nicotinamide were defined as the vitamin precursors of NAD+ in Elvehjem's classic discoveries of the 1930s. The accepted view of eukaryotic NAD+ biosynthesis, that all anabolism flows through nicotinic acid mononucleotide, was challenged experimentally and revealed that nicotinamide riboside is an unanticipated NAD+ precursor in yeast. Nicotinamide riboside kinases from yeast and humans essential for this pathway were identified and found to be highly specific for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin. Nicotinamide riboside was discovered as a nutrient in milk, suggesting that nicotinamide riboside is a useful compound for elevation of NAD+ levels in humans.  相似文献   

9.
M Henderson  P A Kitos 《Teratology》1982,26(2):173-181
The hypothesis that organophosphate (OP) insecticides reduce the NAD+ levels of chick embryos by inhibiting kynurenine formamidase was tested. Fertile chicken eggs at 3 days of incubation were treated with a teratogenic dose of the organophosphate insecticide diazinon (DZN) in the presence or absence of exogenous L-tryptophan or nicotinamide, or one of the metabolic intermediates (L-kynurenine, 3-hydroxyanthranilic acid, quinolinic acid) between tryptophan and NAD+. By day 10 of development, DZN reduced the NAD+ content of the hind limbs of the embryos to less than 20% of normal and by day 15 it caused severe type I and type II teratogenic responses. The co-presence of tryptophan or one of its metabolites served to maintain the NAD+ levels of DZN-treated embryos close to or above normal and significantly alleviated the symptoms of type I teratisms. Tryptophan is virtually as effective as most of its metabolites in suppressing the effects of DZN on the NAD+ content and physical development of the embryos. This equivalence does not support the proposition that the inhibition of kynurenine formamidase causes the lowered NAD+ levels involved in OP-induced type I teratogenesis. It is consistent with the concept that the insecticide acts to decrease the availability of tryptophan to the embryo.  相似文献   

10.
The eukaryotic nicotinamide riboside kinase (Nrk) pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+) by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+.  相似文献   

11.
Effects of hyperthermia and nicotinamide on ADP-ribosyl transferase activity (ADPRT), unscheduled DNA synthesis (UDS), NAD+- and ATP-pools and cytotoxicity were investigated in gamma-irradiated human mononuclear leukocytes. A significant decrease in radiation-induced UDS after heat treatment for 45 min was found. Nicotinamide increased the UDS levels in irradiated cells, but no effect of hyperthermia on these increased UDS values was observed. In the presence of 2 mM nicotinamide radiation-induced ADPRT activity was reduced to about 50 per cent. However, hyperthermia for 45 min was found to have no effect on the enzyme activity for temperatures below 46 degrees C. Nicotinamide increased the NAD+ pool in unirradiated cells. Damaging the cells with gamma-radiation leads to a severe depletion of the NAD+ pool. The NAD+ pool is restored, however, if the cells repair for 5 h at 37 degrees C. When radiation-damaged cells were treated with hyperthermia, exogenously supplied nicotinamide could not be converted to NAD+ in sufficient amounts to prevent NAD+ depletion. These data indicate that the radiosensitizing effect of heat and nicotinamide could both be explained by effects on the enzyme ADPRT, i.e. nicotinamide by directly blocking the enzyme and hyperthermia by limiting the co-substrate (NAD+).  相似文献   

12.
13.
Modifications at the 2'-position of the nicotinamide-ribosyl moiety influence dramatically the nature of the interactions of the modified beta-NAD+ with calf spleen NAD+ glycohydrolase (EC 3.2.2.6), an enzyme that cleaves the nicotinamide-ribose bound in NAD(P)+. Nicotinamide arabinoside adenine dinucleotide (ara-NAD+) and nicotinamide 2'-deoxy-2'-fluoroarabinoside adenine dinucleotide (araF-NAD+) are not hydrolyzed at measurable rates and are the first documented examples of reversible slow binding inhibitors of this class of enzyme. The kinetic data obtained are consistent with both slow kon and koff rate constants in the formation of an enzyme-inhibitor complex, i.e. the association rate constants are about 10(4) and 10(6) slower than diffusion rates, respectively, for araF-NAD+ and ara-NAD+, and the half-life of the complex is about 3-10 min for both analogues. The kinetic model does not account for a slow turnover of an ADP-ribosyl-enzyme intermediary complex. AraF-NAD+ is one of the most potent inhibitors described for NAD+ glycohydrolase.  相似文献   

14.
The protozoan parasite Entamoeba histolytica is an ancient eukaryotic cell that shows morphologically atypical organelles and differs metabolically from higher eukaryotic cells. The aim of this study was to determine the subcellular localization of ameba NAD+-dependent alcohol dehydrogenase (ADH2). The enzyme activity was present in soluble and mainly in particulate material whose density was 1.105 in a sucrose gradient. By differential centrifugation, most of the ADH activity sedimented at 160,000 g (160,000-g pellet), similar to the Escherichia coli polymeric ADHE. In the Coomassie staining of the 160,000-g pellet analyzed by electrophoresis, a 96-kDa protein was more prominent than in other fractions; this band was recognized by antibodies against Lactococcus lactis ADHE. By gold labeling, the antibodies recognized the granular material that mainly constitutes the 160,000-g pellet and a material that sedimented along with the internal membrane vesicles. By negative staining, the 160,000-g fraction showed helical rodlike structures with an average length of 103 nm; almost no membrane vesicles were observed in this pellet. In internal membrane fractions, no rodlike structures were found, but protomerlike round structures were observed. These results indicate that the main amebic NAD+-dependent ADH2 activity is naturally organized as rodlike helical particles, similar to bacterial ADHE. Detection of ADH2 in membrane fractions might be explained by cosedimentation of the multimeric ADH during membrane purification.  相似文献   

15.
Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in various cellular biochemical reactions. To date the signaling pathways that regulate NAD(+) metabolism remain unclear due to the dynamic nature and complexity of the NAD(+) metabolic pathways and the difficulty of determining the levels of the interconvertible pyridine nucleotides. Nicotinamide riboside (NmR) is a key pyridine metabolite that is excreted and re-assimilated by yeast and plays important roles in the maintenance of NAD(+) pool. In this study we establish a NmR-specific reporter system and use it to identify yeast mutants with altered NmR/NAD(+) metabolism. We show that the phosphate-responsive signaling (PHO) pathway contributes to control NAD(+) metabolism. Yeast strains with activated PHO pathway show increases in both the release rate and internal concentration of NmR. We further identify Pho8, a PHO-regulated vacuolar phosphatase, as a potential NmR production factor. We also demonstrate that Fun26, a homolog of human ENT (equilibrative nucleoside transporter), localizes to the vacuolar membrane and establishes the size of the vacuolar and cytosolic NmR pools. In addition, the PHO pathway responds to depletion of cellular nicotinic acid mononucleotide (NaMN) and mediates nicotinamide mononucleotide (NMN) catabolism, thereby contributing to both NmR salvage and phosphate acquisition. Therefore, NaMN is a putative molecular link connecting the PHO signaling and NAD(+) metabolic pathways. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes.  相似文献   

16.
The human genome has three unique genes coding for kinesin-13 proteins called Kif2a, Kif2b, and MCAK (Kif2c). Kif2a and MCAK have documented roles in mitosis, but the function of Kif2b has not been defined. Here, we show that Kif2b is expressed at very low levels in cultured cells and that GFP-Kif2b localizes predominately to centrosomes and midbodies, but also to spindle microtubules and transiently to kinetochores. Kif2b-deficient cells assemble monopolar or disorganized spindles. Chromosomes in Kif2b-deficient cells show typical kinetochore-microtubule attachments, but the velocity of movement is reduced approximately 80% compared with control cells. Some Kif2b-deficient cells attempt anaphase, but the cleavage furrow regresses and cytokinesis fails. Like Kif2a-deficient cells, bipolar spindle assembly can be restored to Kif2b-deficient cells by simultaneous deficiency of MCAK or Nuf2 or treatment with low doses of nocodazole. However, Kif2b-deficient cells are unique in that they assemble bipolar spindles when the pole focusing activities of NuMA and HSET are perturbed. These data demonstrate that Kif2b function is required for spindle assembly and chromosome movement and that the microtubule depolymerase activities of Kif2a, Kif2b, and MCAK fulfill distinct functions during mitosis in human cells.  相似文献   

17.
18.
19.
20.
Terrestrial plant pollen is classified into two categories based on its metabolic status: pollen with low-metabolism are termed “orthodox” and pollen with high-metabolism are termed “recalcitrant.” Nicotinamide adenine dinucleotide (NAD) is crucial for a number of metabolisms in all extant organisms. It has recently been shown that NAD homeostasis plays an important role in a broad range of developmental processes and responses to environment. Recently, a reverse genetic approach shed light on the significance of NAD biosynthesis on pollen fate. In orthodox Arabidopsis pollen, NAD+ that was accumulated in excess at dispersal dramatically decreased on rehydration. The lack of a key gene that is involved in NAD biosynthesis compromised the excess accumulation. Moreover, absence of the excess accumulation phenocopied the so-called recalcitrant pollen, as demonstrated by the germination inside anthers and the loss of desiccation tolerance. Upon rehydration, NAD+-consuming inhibitors impaired tube germination. Taken together, our results suggest that accumulation of NAD+ functions as a physiochemical molecular switch for suspended metabolism and that the decrease of NAD+ plays a very important role during transitions in metabolic states. Shifting of the redox state to an oxidizing environment may efficiently control the comprehensive metabolic network underlying the onset of pollen germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号