首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Dovitinib (TKI258; formerly CHIR‐258) is an orally bioavailable inhibitor of multiple receptor tyrosine kinases. Interestingly, Dovitinib triggered a G2/M arrest in cancer cell lines from diverse origins including HeLa, nasopharyngeal carcinoma, and hepatocellular carcinoma. Single‐cell analysis revealed that Dovitinib promoted a delay in mitotic exit in a subset of cells, causing the cells to undergo mitotic slippage. Higher concentrations of Dovitinib induced a G2 arrest similar to the G2 DNA damage checkpoint. In support of this, DNA damage was triggered by Dovitinib as revealed by γ‐H2AX and comet assays. The mitotic kinase CDK1 was found to be inactivated by phosphorylation in the presence of Dovitinib. Furthermore, the G2 arrest could be overcome by abrogation of the G2 DNA damage checkpoint using small molecule inhibitors of CHK1 and WEE1. Finally, Dovitinib‐mediated G2 cell cycle arrest and subsequent cell death could be promoted after DNA damage repair was disrupted by inhibitors of poly(ADP‐ribose) polymerases. These results are consistent with the recent finding that Dovitinib can also target topoisomerases. Collectively, these results suggest additional directions for use of Dovitinib, in particular with agents that target the DNA damage checkpoint.  相似文献   

2.
3.
The ultraviolet radiation (UVR) component of sunlight is the major environmental risk factor for melanoma, producing DNA lesions that can be mutagenic if not repaired. The high level of mutations in melanomas that have the signature of UVR‐induced damage indicates that the normal mechanisms that detect and repair this damage must be defective in this system. With the exception of melanoma‐prone heritable syndromes which have mutations of repair genes, there is little evidence for somatic mutation of known repair genes. Cell cycle checkpoint controls are tightly associated with repair mechanisms, arresting cells to allow for repair before continuing through the cell cycle. Checkpoint signaling components also regulate the repair mechanisms. Defects in checkpoint mechanisms have been identified in melanomas and are likely to be responsible for increased mutation load in melanoma. Loss of the checkpoint responses may also provide an opportunity to target melanomas using a synthetic lethal approach to identify and inhibit mechanisms that compensate for the defective checkpoints.  相似文献   

4.
DNA损伤检验点调控的分子机制   总被引:1,自引:0,他引:1  
Guo YH  Zhu YB 《生理科学进展》2007,38(3):208-212
多种因素可以引起DNA损伤而最终导致基因产生错义突变、缺失或错误重组。为确保遗传准确性,细胞形成了复杂的细胞周期监督机制,即细胞周期检验点。其中DNA损伤检验点由许多检验点相关蛋白组成,可以识别损伤的DNA,经复杂的信号转导途径引发蛋白激酶的级联反应,减慢或阻滞细胞周期进程,从而为细胞修复损伤的DNA赢得时间。  相似文献   

5.
ATM and p53, effectors of the DNA damage checkpoint, are generally considered pro-apoptotic in neurons. We show that DNA damage and checkpoint activation occurs in postmitotic neurons in animal models of tauopathy, neurodegenerative disorders that include Alzheimer's disease. Surprisingly, checkpoint attenuation potently increases neurodegeneration through aberrant cell cycle re-entry of postmitotic neurons. These data suggest an unexpected neuroprotective role for the DNA damage checkpoint in tauopathies.  相似文献   

6.
The evolutionally conserved Fun30 chromatin remodeler in Saccharomyces cerevisiae has been shown to contribute to cellular resistance to genotoxic stress inflicted by camptothecin (CPT), methyl methanesulfonate (MMS) and hydroxyurea (HU). Fun30 aids in extensive DNA resection of DNA double stranded break (DSB) ends, which is thought to underlie its role in CPT-resistance. How Fun30 promotes MMS- or HU-resistance has not been resolved. Interestingly, we have recently found Fun30 to also play a negative role in cellular tolerance to MMS and HU in the absence of the Rad5-dependent DNA damage tolerance pathway. In this report, we show that Fun30 acts to down regulate Rad9-dependent DNA damage checkpoint triggered by CPT or MMS, but does not affect Rad9-independent intra-S phase replication checkpoint induced by MMS or HU. These results support the notion that Fun30 contributes to cellular response to DSBs by preventing excessive DNA damage checkpoint activation in addition to its role in facilitating DNA end resection. On the other hand, we present evidence suggesting that Fun30’s negative function in MMS- and HU-tolerance in the absence of Rad5 is not related to its regulation of checkpoint activity. Moreover, we find Fun30 to be cell cycle regulated with its abundance peaking in G2/M phase of the cell cycle. Importantly, we demonstrate that artificially restricting Fun30 expression to G2/M does not affect its positive or negative function in genotoxin-resistance, but confining Fun30 to S phase abolishes its functions. These results indicate that both positive and negative functions of Fun30 in DNA damage response occur mainly in G2/M phase.  相似文献   

7.
Both the DNA damage response (DDR) and the mitotic checkpoint are critical for the maintenance of genomic stability. Among proteins involved in these processes, the ataxia–telangiectasia mutated (ATM) kinase is required for both activation of the DDR and the spindle assembly checkpoint (SAC). In mitosis without DNA damage, the enzymatic activity of ATM is enhanced; however, substrates of ATM in mitosis are unknown. Using stable isotope labeling of amino acids in cell culture mass spectrometry analysis, we identified a number of proteins that can potentially be phosphorylated by ATM during mitosis. This list is highly enriched in proteins involved in cell cycle regulation and the DDR. Among them, we further validated that ATM phosphorylated budding uninhibited by benzimidazoles 3 (Bub3), a major component of the SAC, on serine 135 (Ser135) both in vitro and in vivo. During mitosis, this phosphorylation promoted activation of another SAC component, benzimidazoles 1. Mutation of Bub3 Ser135 to alanine led to a defect in SAC activation. Furthermore, we found that ATM-mediated phosphorylation of Bub3 on Ser135 was also induced by ionizing radiation-induced DNA damage. However, this event resulted in independent signaling involving interaction with the Ku70–Ku80–DNA-PKcs sensor/kinase complex, leading to efficient nonhomologous end-joining repair. Taken together, we highlight the functional significance of the crosstalk between the kinetochore-oriented signal and double-strand break repair pathways via ATM phosphorylation of Bub3 on Ser135.  相似文献   

8.
9.
KP1019 comprises a class of ruthenium compounds having promising anticancer activity. Here, we investigated the molecular targets of KP1019 using Saccharomyces cerevisiae as a model organism. Our results revealed that in the absence of the N-terminal tail of histone H3, the growth inhibitory effect of KP1019 was markedly enhanced. Furthermore, H3K56A or rtt109Δ mutants exhibit hypersensitivity for KP1019. Moreover, KP1019 evicts histones from the mononucleosome and interacts specifically with histone H3. We have also shown that KP1019 treatment causes induction of Ribonucleotide Reductase (RNR) genes and degradation of Sml1p. Our results also suggest that DNA damage induced by KP1019 is primarily repaired through double-strand break repair (DSBR). In summary, KP1019 targets histone proteins, with important consequences for DNA damage responses and epigenetics.  相似文献   

10.
David Lydall 《The EMBO journal》2009,28(15):2174-2187
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell‐cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell‐cycle division are discussed.  相似文献   

11.
DNA lesions trigger the DNA damage response (DDR) machinery, which protects genomic integrity and sustains cellular survival. Increasing data underline the significance of the integrity of the DDR pathway in chemotherapy response. According to a recent work, persistent exposure of A549 lung carcinoma cells to doxorubicin induces an initial DDR‐dependent checkpoint response, followed by a later DDR‐independent, but p27Kip1‐dependent one. Prompted by the above report and to better understand the involvement of the DDR signaling after chemotherapeutic stress, we examined the potential role of the canonical DDR pathway in A549 cells treated with doxorubicin. Exposure of A549 cells, prior to doxorubicin treatment, to ATM, ATR and DNA‐PKcs inhibitors either alone or in various combinations, revealed that the earlier documented two‐step response was DDR‐dependent in both steps. Notably, inhibition of both ATM and ATR or selective inhibition of ATM or DNA‐PKcs resulted in cell‐cycle re‐entry despite the increased levels of p27Kip1 at all time points analyzed. We further investigated the regulation of p27Kip1 protein levels in the particular setting. Our results showed that the protein status of p27Kip1 is mainly determined by p38‐MAPK, whereas the role of SKP2 is less significant in the doxoroubicin‐treated A549 cells. Cumulatively, we provide evidence that the DNA damage signaling is responsible for the prolonged cell cycle arrest observed after persistent chemotherapy‐induced genotoxic stress. In conclusion, precise identification of the molecular mechanisms that are activated during the chemotherapeutic cycles could potentially increase the sensitization to the therapy applied.  相似文献   

12.
13.
The non-enzymatic repair of DNA oxidative damage can occur in a purely chemical system, but data show that it might also occur in cells. Human hepatoma cells (SMMC-7721) and human hepatocyte cells (LO2) were treated with 200 μM H2O2 for 30 min to induce oxidative DNA damage quantified by amount of 8-OHdG and degree of DNA strand breaks, without inducing enzymatic repair. The dynamics of enzymatic repair activity quantified by unscheduled DNA synthesis, within 30 min after removal of H2O2 enzymatic repair mechanism has not been initiated. However, pre-incubation with low micromolar level polyphenols, quercetin or rutin can significantly attenuate DNA damage in both cell lines, indicating that the polyphenols did not work through an enzymatic mechanism. Unscheduled DNA synthesis after removal of H2O2 was also markedly decreased by quercetin and rutin. Combined with our previous studies of fast reaction chemistry, the inhibitory effect of polyphenols have to be assigned to non-enzymatic repair mechanism rather than to enzymatic repair mechanism or antioxidant mechanism.  相似文献   

14.
Bid has multiple functions in apoptosis, survival, and proliferation. The role of Bid in etoposide-induced-DNA damage in HCC has not been investigated. Here, we report that p53-overexpression led to the notable up-regulation of the expression of Bid protein, whereas the acquired expression of Bid by PLC/PRF/5 cells dramatically decreased the p53 level. Upon the administration of a high dose of etoposide (causing irreparable damage), Bid sensitized cells to apoptosis. However, at a low dose of etoposide (repairable damage), Bid activated the S phase checkpoint through the up-regulation of p21 and p27, which are both p53-independent. While the unrepairable damage was being carried out, Bid was quickly translocated to the mitochondria to release cytochrome c into the cytosol, which activated caspases 9 and 3 and led to cell death. In conclusion, our study demonstrates that Bid both exhibits S phase checkpoint activation and plays a pro-apoptotic role in response to different degrees of etoposide-induced DNA damage in HCC cells. The elucidation of these intricate mechanisms of Bid points to the development of a possible therapeutic option that combines cytotoxic therapies to treat HCC.  相似文献   

15.
彭斌  王静  胡源  许兴智 《生命科学》2014,(11):1120-1135
DNA损伤应答(DNA damage response,DDR)是维持基因组稳定性的核心机制,对DDR的研究不仅有助于阐明癌症发生发展的机理,同时也为癌症治疗和抗癌新药开发提供生物学基础。蛋白质翻译后修饰,尤其是蛋白激酶介导的磷酸化修饰和蛋白磷酸酶介导的去磷酸化修饰,参与调控绝大多数的生命活动过程,包括DDR。对蛋白激酶ATM/ATR/CHK2/CHK1介导的DDR的研究已经比较透彻,但是对蛋白磷酸酶在DDR中的功能研究还有待加强和深入。比较全面地综述丝氨酸/苏氨酸蛋白磷酸酶在DDR中的功能并探讨在抗癌新药开发中的前景。  相似文献   

16.
Summary The initiation protein DnaA of Escherichia coli regulates its own expression autogenously by binding to a 9 by consensus sequence, the dnaA box, between the promoters dnaAP1 and dnaAP2. In this study, we analysed dnaA regulation in relation to DNA damage and found dnaA expression to be inducible by DNA lesions that inhibit DNA replication. On the other hand, coding DNA lesions were not able to induce dnaA expression. These results suggest that an additional regulatory mechanism is involved in dnaA gene expression and that DnaA protein may play a role in cellular responses to DNA damage. Furthermore, they strongly suggest that in response to DNA replication inhibition by DNA damage, and enhanced (re)initiation capacity is induced by oriC.  相似文献   

17.
Genistein is a major isoflavonoid in dietary soybean, commonly consumed in Asia. Genistein exerts inhibitory effects on the proliferation of various cancer cells and plays an important role in cancer prevention. However, the molecular and cellular mechanisms of genistein on human ovarian cancer cells are still little known. We show that exposure of human ovarian cancer HO-8910 cells to genistein induces DNA damage, and triggers G2/M phase arrest and apoptosis. Furthermore, we also found that checkpoint proteins ATM and ATR are phosphorylated and activated in the cells treated with genistein. It is also shown that genistein increases the phosphorylation and activation of Chk1 and Chk2, which results in the phosphorylation and inactivation of phosphatases Cdc25C and Cdc25A, and thereby the phosphorylation and inactivation of Cdc2 which arrests cells in G2/M phase. Moreover, genistein enhances the phosphorylation and activation of p53, while decreases the ratio of Bcl-2/Bax and Bcl-xL/Bax and the level of phosphorylated Akt, which result in cells undergoing apoptosis. These results demonstrate that genistein-activated ATM-Chk2-Cdc25 and ATR-Chk1-Cdc25 DNA damage checkpoint pathways can arrest ovarian cancer cells in G2/M phase, and induce apoptosis while the cellular DNA damage is too serious to be repaired. Thus, the antiproliferative, DNA damage-inducing and pro-apoptotic activities of genistein are probably responsible for its genotoxic effects on human ovarian cancer HO-8910 cells.  相似文献   

18.
DNA damage response (DDR) serves as an integrated cellular network to detect cellular stress and react by activating pathways responsible for halting cell cycle progression, stimulating DNA damage repair, and initiating apoptosis. Efficient DDR protects cells from genomic instability while defective DDR can allow DNA lesions to go unrepaired, causing permanent mutations that will affect future generations of cells and possibly cause disease conditions such as cancer. Therefore, DDR mechanisms must be tightly regulated in order to ensure organismal health and viability. One major way of DDR regulation is ubiquitination, which has been long known to control DDR protein localization, activity, and stability. The reversal of this process, deubiquitination, has more recently come to the forefront of DDR research as an important new angle in ubiquitin-mediated regulation of DDR. As such, deubiquitinases have emerged as key factors in DDR. Importantly, deubiquitinases are attractive small-molecule drug targets due to their well-defined catalytic residues that provide a promising avenue for developing new cancer therapeutics. This review focuses on the emerging roles of deubiquitinases in various DNA repair pathways.  相似文献   

19.
Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.  相似文献   

20.
DNA single-strand breaks (SSB) formation coordinates the myogenic program, and defects in SSB repair in post-mitotic cells have been associated with human diseases. However, the DNA damage response by SSB in terminally differentiated cells has not been explored yet. Here we show that mouse post-mitotic muscle cells accumulate SSB after alkylation damage, but they are extraordinarily resistant to the killing effects of a variety of SSB-inducers. We demonstrate that, upon SSB induction, phosphorylation of H2AX occurs in myotubes and is largely ataxia telangiectasia mutated (ATM)-dependent. However, the DNA damage signaling cascade downstream of ATM is defective as shown by lack of p53 increase and phosphorylation at serine 18 (human serine 15). The stabilization of p53 by nutlin-3 was ineffective in activating the cell death pathway, indicating that the resistance to SSB inducers is due to defective p53 downstream signaling. The induction of specific types of damage is required to activate the cell death program in myotubes. Besides the topoisomerase inhibitor doxorubicin known for its cardiotoxicity, we show that the mitochondria-specific inhibitor menadione is able to activate p53 and to kill effectively myotubes. Cell killing is p53-dependent as demonstrated by full protection of myotubes lacking p53, but there is a restriction of p53-activated genes. This new information may have important therapeutic implications in the prevention of muscle cell toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号