首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis, which is regulated by multiple signaling pathways. The Wnt/β-catenin pathway has a critical role in this process. Previously, we have shown that the calcineurin-dependent nuclear factor of activated T cell (NFAT) is involved in the regulation of intestinal cell differentiation, as noted by the alteration of brush-border enzyme intestinal alkaline phosphatase (IAP) activity. Here, we show that calcineurin-independent NFAT5 interacts with β-catenin to repress Wnt signaling. We found that overexpression of NFAT5 inhibits, whereas knockdown of NFAT5 increases, TOPflash reporter activity and the expression of Wnt/β-catenin target genes, suggesting that NFAT5 inhibits Wnt signaling. In addition, we demonstrated that NFAT5 directly interacts with the C-terminal transactivation domain (TAD) of β-catenin, inhibits CBP interaction with β-catenin, and inhibits CBP-mediated β-catenin acetylation. Moreover, NFAT5 is expressed in the mucosa of human intestine, with the most pronounced staining in the most differentiated region near the epithelial surface. Knockdown of NFAT5 attenuated sodium butyrate (NaBT)-mediated induction of IAP and sucrase activities; overexpression of NFAT5 induced IAP promoter activity. In summary, we provide evidence showing that NFAT5 is a regulator of Wnt signaling. Importantly, our results suggest that NFAT5 regulation of intestinal cell differentiation may be through inhibition of Wnt/β-catenin signaling.  相似文献   

4.
5.
The canonical Wnt signal pathway is a key regulator of self-renewal and cell fate determination in various types of stem cells. The total pool of β-catenin consists of two different forms: the signaling form of the protein transmits the Wnt signals from the cell membrane to the target genes, whereas the membrane β-catenin is involved in formation of cell-to-cell contact at cadherin junctions. Earlier we developed an in vitro model of epithelial differentiation of mesenchymal stem cells (MSCs) co-cultured with epithelial A-549 cells. The purpose of the present work was to study the role of Wnt2 secreted by the A-549 cells in paracrine induction of β-catenin in co-cultured MSCs. Using the somatic gene knockdown technique, we obtained A-549 cell cultures with down-regulated WNT2. The MSCs co-cultured with the control A-549 cells displayed an increase in the levels of total cellular and signaling β-catenin and transactivation of a reporter construction containing the Lef/Tcf protein family binding sites. In contrast, β-catenin was not induced in the MSCs co-cultured with the A-549 cells with down-regulated WNT2 expression, but the total protein level was increased. We suggest that Wnt2 secreted by A-549 cells induces in co-cultured MSCs the Wnt/β-catenin signaling pathway, whereas the associated increase in total β-catenin level should be due to another mechanism.  相似文献   

6.
7.
8.
9.
Loss- and gain-of function approaches modulating canonical Wnt/β-catenin activity have established a role for the Wnt/β-catenin pathway during tooth development. Here we show that Wnt/β-catenin signaling is required in the dental mesenchyme for normal incisor development, as locally restricted genetic inactivation of β-catenin results in a splitting of the incisor placode, giving rise to two incisors. Molecularly this is first associated with down-regulation of Bmp4 and subsequent splitting of the Shh domain at a subsequent stage. The latter phenotype can be mimicked by ectopic application of the BMP antagonist Noggin. Conditional genetic inactivation of Bmp4 in the mesenchyme reveals that mesenchymal BMP4 activity is required for maintenance of Shh expression in the dental ectoderm. Taken together our results indicate that β-catenin together with Lef1 and Tcf1 are required to activate Bmp4 expression in order to maintain Shh expression in the dental ectoderm. This provides a mechanism whereby the number of incisors arising from one placode can be varied through local alterations of a mesenchymal signaling circuit involving β-catenin, Lef1, Tcf1 and Bmp4.  相似文献   

10.
Actin-binding protein anillin (ANLN) is primarily involved in the cytokinesis and known to be dysregulated in many cancers including gastric cancer (GC). However, the regulation and clinical significance of ANLN in GC are far less clear. In the present study, we aimed to investigate the clinical significance and possible regulators of ANLN in GC. We have identified the Wnt/β-catenin associated regulation of ANLN by analyzing the in vitro perturbed β-catenin mRNA expression profiles. Investigating the gastric tumors from publicly available genome-wide mRNA expression profiles, we have identified the over expression of ANLN in gastric tumors. Association between ANLN expression and clinical characteristics of GC showed elevated expression in intestinal type GC. Performing a single sample prediction method across GC mRNA expression profiles, we have identified the over expression of ANLN in proliferative type gastric tumors compared to the invasive and metabolic type gastric tumors. In silico pathway prediction analysis revealed the association between Wnt/β-catenin signaling and ANLN expression in gastric tumors. Our results highlight that expression of a Wnt/β-catenin responsive gene ANLN in GC is a molecular predictor of intestinal and proliferative type gastric tumors.  相似文献   

11.
12.
Tian W  Han X  Yan M  Xu Y  Duggineni S  Lin N  Luo G  Li YM  Han X  Huang Z  An J 《Biochemistry》2012,51(2):724-731
Overactivation or overexpression of β-catenin in the Wnt (wingless) signaling pathway plays an important role in tumorigenesis. Interaction of β-catenin with T-cell factor (Tcf) DNA binding proteins is a key step in the activation of the proliferative genes in response to upstream signals of this Wnt/β-catenin pathway. Recently, we identified a new small molecule inhibitor, named BC21 (C(32)H(36)Cl(2)Cu(2)N(2)O(2)), which effectively inhibits the binding of β-catenin with Tcf4-derived peptide and suppresses β-catenin/Tcf4 driven reporter gene activity. This inhibitor decreases the viability of β-catenin overexpressing HCT116 colon cancer cells that harbor the β-catenin mutation, and more significantly, it inhibits the clonogenic activity of these cells. Down-regulation of c-Myc and cyclin D1 expression, the two important effectors of the Wnt/β-catenin signaling, is confirmed by treating HCT116 cells with BC21. This compound represents a new and modifiable potential anticancer candidate that targets β-catenin/Tcf-4 interaction.  相似文献   

13.
The regulation of intracellular β-catenin levels is central in the Wnt/β-catenin signaling cascade and the activation of the Wnt target genes. Here, we show that homeodomain-interacting protein kinase 2 (HIPK2) acts as a negative regulator of the Wnt/β-catenin pathway. Knock-down of endogenous HIPK2 increases the stability of β-catenin and results in the accumulation of β-catenin in the nucleus, consequently enhancing the expression of Wnt target genes and cell proliferation both in vivo and in cultured cells. HIPK2 inhibits TCF/LEF-mediated target gene activation via degradation of β-catenin. HIPK2 phosphorylates β-catenin at its Ser33 and Ser37 residues without the aid of a priming kinase. Substitutions of Ser33 and Ser37 for alanines abolished the degradation of β-catenin associated with HIPK2. In ex vivo mouse model, HIPK2 knock-down resulted in accumulation of β-catenin, thereby potentiated β-catenin-mediated cell proliferation and tumor formation. Furthermore, the axis duplication induced by the ectopic expression of β-catenin was blocked by co-injection of HIPK2 mRNAs into Xenopus embryos. Taken together, HIPK2 appears to function as a novel negative regulator of β-catenin through its phosphorylation and proteasomal degradation.  相似文献   

14.
15.
16.
17.
18.
Wnt signaling has been implicated in many developmental processes, but its role in early endoderm development is not well understood. Wnt signaling is active in posterior endoderm as early as E7.5. Genetic and chemical activation show that the Wnt pathway acts directly on endoderm to induce the intestinal master regulator Cdx2, shifting global gene away from anterior endoderm and toward a posterior, intestinal program. In a mouse embryonic stem cell differentiation platform that yields pure populations of definitive endoderm, Wnt signaling induces intestinal gene expression in all cells. We have identified a set of genes specific to the anterior small intestine, posterior small intestine, and large intestine during early development, and show that Wnt, through Cdx2, activates large intestinal gene expression at high doses and small intestinal gene expression at lower doses. These findings shed light on the mechanism of embryonic intestinal induction and provide a method to manipulate intestinal development from embryonic stem cells.  相似文献   

19.
Tilghman RW  Hoover RL 《FEBS letters》2002,518(1-3):83-87
The homeobox gene Cdx1 is a regulator of intestinal epithelial cell proliferation and differentiation. Using a transfection approach, we showed here that the oncogenic activation of the beta-catenin pathway stimulates the endogenous expression of the Cdx1 mRNA as well as the activity of the Cdx1 promoter in cancer cells of the human colon. Reciprocally, the paralogue homeobox gene Cdx2 exerts an inhibitory effect on the basal and on the beta-catenin-stimulated activity of the Cdx1 promoter. The inhibitory effect of CDX2 requires the intact homeodomain. It is not dependent on canonical CDX binding sites in the Cdx1 promoter nor on the cis-elements specifically targeted by the beta-catenin/Tcf complex. We conclude that the oncogenically activated beta-catenin and CDX2 have opposite and independent effects on the Cdx1 homeobox gene.  相似文献   

20.
The co-occupancy of Tcf3 with Oct4, Sox2 and Nanog on embryonic stem cell (ESC) chromatin indicated that Tcf3 has been suggested to play an integral role in a poorly understood mechanism underlying Wnt-dependent stimulation of mouse ESC self-renewal of mouse ESCs. Although the conventional view of Tcf proteins as the β-catenin-binding effectors of Wnt signalling suggested Tcf3-β-catenin activation of target genes would stimulate self-renewal, here we show that an antagonistic relationship between Wnt3a and Tcf3 on gene expression regulates ESC self-renewal. Genetic ablation of Tcf3 replaced the requirement for exogenous Wnt3a or GSK3 inhibition for ESC self-renewal, demonstrating that inhibition of Tcf3 repressor is the necessary downstream effect of Wnt signalling. Interestingly, both Tcf3-β-catenin and Tcf1-β-catenin interactions contributed to Wnt stimulation of self-renewal and gene expression, and the combination of Tcf3 and Tcf1 recruited Wnt-stabilized β-catenin to Oct4 binding sites on ESC chromatin. This work elucidates the molecular link between the effects of Wnt and the regulation of the Oct4/Sox2/Nanog network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号