首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the follicle cell (FC) epithelium that surrounds the Drosophila egg, a complex set of cell signals specifies two cell fates that pattern the eggshell: the anterior centripetal FC that produce the operculum and the posterior columnar FC that produce the main body eggshell structure. We have previously shown that the long-range morphogen DPP represses the expression of the bunched (bun) gene in the anterior-most centripetal FC. bun, which encodes a homolog of vertebrate TSC-22/GILZ, in turn represses anterior gene expression and antagonizes Notch signaling to restrict centripetal FC fates in posterior cells. From a screen for novel targets of bun repression we have identified the C/EBP homolog slow border cells (slbo). At stage 10A, slbo expression overlaps bun in anterior FC; by stage 10B they repress each other's expression to establish a sharp slbo/bun expression boundary. The precise position of the slbo/bun expression boundary is sensitive to Notch signaling, which is required for both slbo activation and bun repression. As centripetal migration proceeds from stages 10B-14, slbo represses its own expression and both slbo loss-of-function mutations and overexpression approaches reveal that slbo is required to coordinate centripetal migration with nurse cell dumping. We propose that in anterior FC exposed to a Dpp morphogen gradient, high and low levels of slbo and bun, respectively, are established by modulation of Notch signaling to direct threshold cell fates. Interactions among Notch, slbo and bun resemble a conserved signaling cassette that regulates mammalian adipocyte differentiation.  相似文献   

2.
3.
4.
5.
6.
7.
C/EBP homologous protein (CHOP) is a stress-inducible nuclear protein that is crucial for the development of programmed cell death and regeneration; however, the regulation of its function has not been well characterized. Slbo, a Drosophila homolog of C/EBP (CCAAT/enhancer binding protein), was shown to be unstabilized by tribbles. Here, we identified TRB3 as a tribbles ortholog in humans, which associated with CHOP to suppress the CHOP-dependent transactivation. TRB3 is induced by various forms endoplasmic reticulum (ER) stress later than CHOP. Tunicamycin treatment enhanced the TRB3 promoter activity, while dominant-negative forms of CHOP suppressed the tunicamycin-induced activation. In addition, the tunicamycin response region in the TRB3 promoter contains amino-acid response elements overlapping the CHOP-binding site, and CHOP and ATF4 cooperated to activate this promoter activity. Knockdown of endogenous ATF4 or CHOP expression dramatically repressed tunicamycin-induced TRB3 induction. Furthermore, knockdown of TRB3 expression decreased ER stress-dependent cell death. These results indicate that TRB3 is a novel target of CHOP/ATF4 and downregulates its own induction by repression of CHOP/ATF4 functions, and that it is involved in CHOP-dependent cell death during ER stress.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号