首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Caenorhabditis elegans germline is a well-studied model system for investigating the control of cell fate by signaling pathways. Cell signals at the distal tip of the germline promote cell proliferation; just before the loop, signals couple cell maturation to organism-level nutrient status; at the proximal end of the germline, signals coordinate oocyte maturation and fertilization in the presence of sperm. The latter two events require dual phosphorylation and activation of ERK, the effector molecule of the Ras/MAPK cascade. In C. elegans, ERK is known as MPK-1. At this point, none of today’s methods for real-time monitoring of dually phosphorylated MPK-1 are working in the germline. Consequently, quantitative understanding of the MPK-1-dependent processes during germline development is limited. Here, we make a step toward advancing this understanding using a model-based framework that reconstructs the time course of MPK-1 activation from a snapshot of a fixed germline. Our approach builds on a number of recent studies for estimating temporal dynamics from fixed organisms, but takes advantage of the anatomy of the germline to simplify the analysis. Our model predicts that the MPK-1 signal turns on ∼30 h into germ cell progression and peaks ∼7 h later.  相似文献   

2.
Fertilization in the female reproductive tract depends on intercellular signaling mechanisms that coordinate sperm presence with oocyte meiotic progression. To achieve this coordination in Caenorhabditis elegans, sperm release an extracellular signal, the major sperm protein (MSP), to induce oocyte meiotic maturation and ovulation. MSP binds to multiple receptors, including the VAB-1 Eph receptor protein-tyrosine kinase on oocyte and ovarian sheath cell surfaces. Canonical VAB-1 ligands called ephrins negatively regulate oocyte maturation and MPK-1 mitogen-activated protein kinase (MAPK) activation. Here, we show that MSP and VAB-1 regulate the signaling properties of two Ca2+ channels that are encoded by the NMR-1 N-methyl D-aspartate type glutamate receptor subunit and ITR-1 inositol 1,4,5-triphosphate receptor. Ephrin/VAB-1 signaling acts upstream of ITR-1 to inhibit meiotic resumption, while NMR-1 prevents signaling by the UNC-43 Ca2+/calmodulin-dependent protein kinase II (CaMKII). MSP binding to VAB-1 stimulates NMR-1-dependent UNC-43 activation, and UNC-43 acts redundantly in oocytes to promote oocyte maturation and MAPK activation. Our results support a model in which VAB-1 switches from a negative regulator into a redundant positive regulator of oocyte maturation upon binding to MSP. NMR-1 mediates this switch by controlling UNC-43 CaMKII activation at the oocyte cortex.  相似文献   

3.
We have recently identified several novel ATP-independent inhibitors that target the extracellular signal-regulated kinase-2 (ERK2) protein and inhibit substrate phosphorylation. To further characterize these compounds, we describe the use of C. elegans as a model organism. C. elegans is recognized as a versatile and cost effective model for use in drug development. These studies take advantage of the well characterized process of vulva development and egg laying, which requires MPK-1, the homolog to human ERK2. It is shown that treatment of C. elegans eggs or larvae prior to vulva formation with a previously identified lead compound (76) caused up to 50% reduction in the number of eggs produced from the adult worm. In contrast, compound 76 had no effect on egg laying in young adult or adult worms with fully formed vulva. The reduction in egg laying by the test compound was not due to effects on C. elegans life span, general toxicity, or non-specific stress. However, compound 76 did show selective inhibition of phosphorylation of LIN-1, a MPK-1 substrate essential for vulva precursor cell formation. Moreover, compound 76 inhibited cell fusion necessary for vulva maturation and reduced the multivulva phenotype in LET-60 (Ras) mutant worms that have constitutive activation of MPK-1. These findings support the use of C. elegans as a model organism to evaluate the selectivity and specificity of novel ERK targeted compounds.  相似文献   

4.
The LET-60 (Ras)/LIN-45 (Raf)/MPK-1 (MAP kinase) signaling pathway plays a key role in the development of multiple tissues in Caenorhabditis elegans. For the most part, the identities of the downstream genes that act as the ultimate effectors of MPK-1 signaling have remained elusive. A unique allele of mpk-1, ga111, displays a reversible, temperature-sensitive, tissue-specific defect in progression through meiotic prophase I. We performed gene expression profiling on mpk-1(ga111) animals to identify candidate downstream effectors of MPK-1 signaling in the germ line. This analysis delineated a cohort of genes whose expression requires MPK-1 signaling in germ cells in the pachytene stage of meiosis I. RNA in situ hybridization analysis shows that these genes are expressed in the germ line in an MPK-1-dependent manner and have a spatial expression pattern consistent with the location of activated MPK-1. We found that one MPK-1 signaling-responsive gene encoding a C2H2 zinc finger protein plays a role in meiotic chromosome segregation downstream of MPK-1. Additionally, discovery of genes responsive to MPK-1 signaling permitted us to order MPK-1 signaling relative to several events occurring in pachytene, including EFL-1/DPL-1 gene regulation and X chromosome reactivation. This study highlights the utility of applying global gene expression methods to investigate genes downstream of commonly used signaling pathways in vivo.  相似文献   

5.
Zheng YH  Zheng LP  Li F  Wu L  Dai YC 《生理学报》2008,60(1):97-104
本研究探讨了原癌基因c-erbB:和c-myb对小鼠卵母细胞成熟的影响及其在调控卵母细胞成熟中与丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和成熟促进因子(mamration promoting factor,MPF)的上下游关系.c-erbB2反义寡脱氧核苷酸(antisense oligodeoxynucleotide,ASODN)和c.myb ASODN均呈剂量依赖方式抑制卵母细胞的生发泡破裂(germinalvesicle breakdown,GVBD)率和第一极体(first polar body,PBl)排放率,并显著延迟其成熟时间.小鼠卵母细胞显微注射重组人c-erbB2蛋白和c-myb蛋白后,培养6 h其GVBD率分别比对照组上升了23.1%(P<0.05)和32.2%(P<0.05),.培养12 h其PBl排放率分别比对照组上升了17.3%(P<0.05)和23.5%(P<0.05).RT-PCR结果显示,小鼠卵母细胞中存在c-erbB2mRNA和c-myb mRNA表达;c-erbB2ASODN能明显抑制卵母细胞中c-erbB2mRNA和c-myb mRNA的表达,c-myb ASODN能明显抑制卵母细胞中c-myb mRNA的表达,对c-erbB2 mRNA无明显影响;MAPK抑制剂PD98059以及MPF抑制剂roscovitine在抑制卵母细胞成熟的同时,均能阻断显微注射重组人c-erbB:蛋白和重组人c-myb蛋白对卵母细胞成熟的促进作用,但对卵母细胞中c-erbB2mRNA和c-myb mRNA表达无明显影响.Western blot结果显示,c-erbB2ASODN、c-mybASODN、PD98059、roscovitine均使卵母细胞中MAPK磷酸化水平和cyclinB 1含量下降.结果提示,原癌基因c-erbB2、c-myb在卵母细胞成熟中起重要作用,可能是调控卵母细胞成熟中关键蛋白激酶如MAPK、MPF的上游激活物.  相似文献   

6.
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.  相似文献   

7.
Synapses are composed of a presynaptic active zone in the signaling cell and a postsynaptic terminal in the target cell. In the case of chemical synapses, messages are carried by neurotransmitters released from presynaptic terminals and received by receptors on postsynaptic cells. Our previous research in Caenorhabditis elegans has shown that VSM-1 negatively regulates exocytosis. Additionally, analysis of synapses in vsm-1 mutants showed that animals lacking a fully functional VSM-1 have increased synaptic connectivity. Based on these preliminary findings, we hypothesized that C. elegans VSM-1 may play a crucial role in synaptogenesis. To test this hypothesis, double-labeled microarray analysis was performed, and gene expression profiles were determined. First, total RNA was isolated, reversely transcribed to cDNA, and hybridized to the DNA microarrays. Then, in-silico analysis of fluorescent probe hybridization revealed significant induction of many genes coding for members of the major sperm protein family (MSP) in mutants with enhanced synaptogenesis. MSPs are the major component of sperm in C. elegans and appear to signal nematode oocyte maturation and ovulation . In fruit flies, Chai and colleagues 1 demonstrated that MSP-like molecules regulate presynaptic bouton number and size at the neuromuscular junction. Moreover, analysis performed by Tsuda and coworkers 2 suggested that MSPs may act as ligands for Eph receptors and trigger receptor tyrosine kinase signaling cascades. Lastly, real time PCR analysis corroborated that the gene coding for MSP-32 is induced in vsm-1(ok1468) mutants. Taken together, research performed by our laboratory has shown that vsm-1 mutants have a significant increase in synaptic density, which could be mediated by MSP-32 signaling.  相似文献   

8.
Lee MH  Ohmachi M  Arur S  Nayak S  Francis R  Church D  Lambie E  Schedl T 《Genetics》2007,177(4):2039-2062
The raison d'etre of the germline is to produce oocytes and sperm that pass genetic material and cytoplasmic constituents to the next generation. To achieve this goal, many developmental processes must be executed and coordinated. ERK, the terminal MAP kinase of a number of signaling pathways, controls many aspects of development. Here we present a comprehensive analysis of MPK-1 ERK in Caenorhabditis elegans germline development. MPK-1 functions in four developmental switches: progression through pachytene, oocyte meiotic maturation/ovulation, male germ cell fate specification, and a nonessential function of promoting the proliferative fate. MPK-1 also regulates multiple aspects of cell biology during oogenesis, including membrane organization and morphogenesis: organization of pachytene cells on the surface of the gonadal tube, oocyte organization and differentiation, oocyte growth control, and oocyte nuclear migration. MPK-1 activation is temporally/spatially dynamic and most processes appear to be controlled through sustained activation. MPK-1 thus may act not only in the control of individual processes but also in the coordination of contemporaneous processes and the integration of sequential processes. Knowledge of the dynamic activation and diverse functions of MPK-1 provides the foundation for identification of upstream signaling cascades responsible for region-specific activation and the downstream substrates that mediate the various processes.  相似文献   

9.
BACKGROUND: In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and embryo production; sperm release the major sperm protein (MSP) signal to trigger meiotic resumption. Meiotic arrest depends on the parallel function of the oocyte VAB-1 MSP/Eph receptor and somatic G protein signaling. MSP promotes meiotic maturation by antagonizing Eph receptor signaling and counteracting inhibitory inputs from the gonadal sheath cells. RESULTS: Here, we present evidence suggesting that in the absence of the MSP ligand, the VAB-1 Eph receptor inhibits meiotic maturation while either in or in transit to the endocytic-recycling compartment. VAB-1::GFP localization to the RAB-11-positive endocytic-recycling compartment is independent of ephrins but is antagonized by MSP signaling. Two negative regulators of oocyte meiotic maturation, DAB-1/Disabled and RAN-1, interact with the VAB-1 receptor and are required for its accumulation in the endocytic-recycling compartment in the absence of MSP or sperm (hereafter referred to as MSP/sperm). Inactivation of the endosomal recycling regulators rme-1 or rab-11.1 causes a vab-1-dependent reduction in the meiotic-maturation rate in the presence of MSP/sperm. Further, we show that Galpha(s) signaling in the gonadal sheath cells, which is required for meiotic maturation in the presence of MSP/sperm, affects VAB-1::GFP trafficking in oocytes. CONCLUSIONS: Regulated endocytic trafficking of the VAB-1 MSP/Eph receptor contributes to the control of oocyte meiotic maturation in C. elegans. Eph receptor trafficking in other systems may be influenced by the conserved proteins DAB-1/Disabled and RAN-1 and by crosstalk with G protein signaling in neighboring cells.  相似文献   

10.
11.
Ota R  Kotani T  Yamashita M 《Biochemistry》2011,50(25):5648-5659
Members of the mitogen-activated protein kinase (MAPK) family play important roles in Xenopus oocyte maturation. Nemo-like kinase (NLK), an atypical MAPK, is known to function in multiple developmental processes in vertebrates and invertebrates, but its involvement in gametogenesis and gamete maturation is unknown. In this study, we biochemically examined NLK1 during Xenopus oocyte maturation. NLK1 is expressed in immature oocytes, and its protein level remains constant during maturation. NLK1 is inactive in immature oocytes but is activated during maturation, depending on Mos protein synthesis but not on p42 MAPK activation. Overexpression of NLK1 by injection of 5 ng of mRNA accelerates progesterone-induced oocyte maturation by enhancing Cyclin B1 protein synthesis through the translational activation of its mRNA, in accordance with precocious phosphorylation of Pumilio1 (Pum1), Pumilio2 (Pum2), and cytoplasmic polyadenylation element-binding protein (CPEB), key regulators of the translational control of mRNAs stored in oocytes. A higher level of NLK1 expression by injection of 50 ng of mRNA induces Pum1/Pum2/CPEB phosphorylation, CPEB degradation, Cyclin B1 protein synthesis, and oocyte maturation in the absence of progesterone. NLK1 phosphorylates Pum1, Pum2, and CPEB in vitro. These findings provide the first evidence for the involvement of NLK1 in Xenopus oocyte maturation. We suggest that NLK1 acts as a kinase downstream of Mos and catalyzes phosphorylation of Pum1, Pum2, and CPEB to regulate the translation of mRNAs, including Cyclin B1 mRNA, stored in oocytes.  相似文献   

12.
In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.  相似文献   

13.
Sperm activation: role of reactive oxygen species and kinases   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS), such as the superoxide anion (O(2)(-*)), hydrogen peroxide (H(2)O(2)) and nitric oxide (NO*), when generated at low and controlled levels, act as second messengers. ROS regulate sperm capacitation, which is the complex series of changes allowing spermatozoa to bind to the zona pellucida surrounding the oocyte, induce the acrosome reaction (exocytotic event by which proteolytic enzymes are released) and fertilize the oocyte. Capacitating spermatozoa produce controlled amounts of ROS that regulate downstream events: first, the increase in cAMP, protein kinase A (PKA) activation and phosphorylation of PKA substrates (arginine-X-X-serine/threonine motif; 15-30 min); second, the phosphorylation of MEK (extracellular signal regulated kinase [ERK] kinase)-like proteins (30-60 min) and then that of the threonine-glutamate-tyrosine motif (>1 h); finally, the late tyrosine phosphorylation of fibrous sheath proteins (>2 h). Although all these events are ROS-dependent, the regulation by various kinases, protein kinase C, PKA, protein tyrosine kinases, the ERK pathway, etc. is different. ROS also regulate the acquisition of hyperactivated motility and the acrosome reaction by spermatozoa. ROS action is probably mediated via the sulfhydryl/disulfide pair on sperm proteins. Redundancy, cross talk, and multiple systems acting in parallel point to an array of safeguards assuring the timely function of spermatozoa.  相似文献   

14.

Background  

MAP (mitogen-activated protein) kinase activation is a prerequisite for oocyte maturation, ovulation and fertilisation in many animals. In the hermaphroditic nematode Caenorhabditis elegans, an MSP (major sperm protein) dependent pathway is utilised for MAP kinase activation and successive oocyte maturation with extracellular MSP released from sperm acting as activator. How oocyte-to-embryo transition is triggered in parthenogenetic nematode species that lack sperm, is not known.  相似文献   

15.
The mammalian SPRED (Sprouty-related protein with an EVH1 domain) proteins include a family of three members, SPRED1–3. Currently, little is known about their biochemistry. The best described, SPRED1, has been shown to inhibit the Ras/ERK pathway downstream of Ras. All three SPREDs have a cysteine-rich domain (CRD) that has high homology to the CRD of the Sprouty family of proteins, several of which are also Ras/ERK inhibitors. In the belief that binding partners would clarify SPRED function, we assayed for their associated proteins. Here, we describe the direct and endogenous interaction of SPRED1 and SPRED2 with the novel kinase, DYRK1A. DYRK1A has become the subject of recent research focus as it plays a central role in Caenorhabditis elegans oocyte maturation and egg activation, and there is strong evidence that it could be involved in Down syndrome in humans. Both SPRED1 and SPRED2 inhibit the ability of DYRK1A to phosphorylate its substrates, Tau and STAT3. This inhibition occurs via an interaction of the CRD of the SPREDs with the kinase domain of DYRK1A. DYRK1A substrates must bind to the kinase to enable phosphorylation, and SPRED proteins compete for the same binding site to modify this process. Our accumulated evidence indicates that the SPRED proteins are likely physiological modifiers of DYRK1A.  相似文献   

16.
The LET-60 (Ras)/LIN-45 (Raf)/MPK-1 (MAP kinase) signaling pathway plays a key role in the development of multiple tissues in Caenorhabditis elegans. For the most part, the identities of the downstream genes that act as the ultimate effectors of MPK-1 signaling have remained elusive. A unique allele of mpk-1, ga111, displays a reversible, temperature-sensitive, tissue-specific defect in progression through meiotic prophase I. We performed gene expression profiling on mpk-1(ga111) animals to identify candidate downstream effectors of MPK-1 signaling in the germ line. This analysis delineated a cohort of genes whose expression requires MPK-1 signaling in germ cells in the pachytene stage of meiosis I. RNA in situ hybridization analysis shows that these genes are expressed in the germ line in an MPK-1-dependent manner and have a spatial expression pattern consistent with the location of activated MPK-1. We found that one MPK-1 signaling-responsive gene encoding a C2H2 zinc finger protein plays a role in meiotic chromosome segregation downstream of MPK-1. Additionally, discovery of genes responsive to MPK-1 signaling permitted us to order MPK-1 signaling relative to several events occurring in pachytene, including EFL-1/DPL-1 gene regulation and X chromosome reactivation. This study highlights the utility of applying global gene expression methods to investigate genes downstream of commonly used signaling pathways in vivo.  相似文献   

17.
BACKGROUND: A conserved biological feature of sexual reproduction in animals is that oocytes arrest in meiotic prophase and resume meiosis in response to extraovarian signals. In C. elegans, sperm trigger meiotic resumption by means of the major sperm protein (MSP) signal. MSP promotes meiotic resumption by functioning as an ephrin-signaling antagonist and by counteracting inhibitory inputs from the somatic gonadal sheath cells. RESULTS: By using a genome-wide RNAi screen in a female-sterile genetic background, we identified 17 conserved genes that maintain meiotic arrest in the absence of the MSP signal. In vitro binding experiments show that MSP promotes oocyte mitogen-activated protein kinase activation and meiotic maturation in part through direct interaction with the VAB-1 Eph receptor. Four conserved proteins, including a disabled protein (DAB-1), a vav family GEF (VAV-1), a protein kinase C (PKC-1), and a STAM homolog (PQN-19), function with the VAB-1 Eph/MSP receptor in oocytes. We show that antagonistic Galphao/i and Galphas signaling pathways function in the soma to regulate meiotic maturation in parallel to the VAB-1 pathway. Galphas activity is necessary and sufficient to promote meiotic maturation, which it does in part by antagonizing inhibitory sheath/oocyte gap-junctional communication. CONCLUSIONS: Our findings show that oocyte Eph receptor and somatic cell G protein signaling pathways control meiotic diapause in C. elegans, highlighting contrasts and parallels between MSP signaling in C. elegans and luteinizing hormone signaling in mammals.  相似文献   

18.
19.
Serotonin (5-HT) stimulates superoxide release, phosphorylation, of p42/p44 mitogen-activated protein kinase (MAPK), and DNA synthesis in bovine pulmonary artery smooth muscle cells. Both p42/p44 MAPK and reactive oxygen species (ROS) generation are required for 5-HT-induced growth in SMC. Agents that block the production of ROS, or ROS scavengers, block MAPK activation by 5-HT. However, specific signal transduction by 5-HT leading to proteins that control entrance into the cell cycle are not well defined in smooth muscle cells. Here, we show by Western blot that 5-HT upregulates c-Fos, an immediate early gene product known to regulate the entrance of quiescent cells into the cell cycle. Northern blots showed that c-fos mRNA is induced by 5-HT in 30 min. This induction is blocked by PD98059, indicating that activation of MAPK is required. 5-HT-induced expression of a 350 bp c-fos promoter in a luciferase reporter is blocked by PD98059 and diphenyliodonium (DPI). The GTPases Rac1 and Ras have been implicated in growth factor-induced generation of ROS. Overexpression of either dominant negative (DN) Rac1 or DN Ras inhibited 5-HT-mediated c-fos promoter activation. 5-HT also induced expression from a truncated c-fos promoter containing an isolated serum response element. This activation was blocked by DPI and PD98059. Overexpression of activated Ras and Rac1 were additive for activation of the serum response element promoter. Regulation of cyclin D1, a protein shown to be regulated by c-fos and required for entry into the cell cycle, is upregulated by 5-HT and is blocked by DPI and PD98059. Nuclear factor-κB, which can also regulate cyclin D1, was not activated. We conclude that 5-HT stimulates c-fos and cyclin D1 expression through a ROS-dependent mechanism that requires Ras, Rac1, and MAPK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号