首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1−/− mice lack any obvious limb or skeletal defects, Sost−/− mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost−/−; Sostdc1−/− mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost−/− and Sost−/−; Sostdc1−/− mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling.  相似文献   

6.
It has been extensively documented that exposure of amphibians and teleost fish to exogenous steroid hormones like estrogen, androgen, xenoestrogen or steroid biosynthesis inhibitors can impair their gonadal development or induce sex reversal against genotypic sex. However, the molecular pathways underlying sexual development and the effects of sex steroids or other exogenous hormones in these aquatic vertebrates remain elusive. Recently, a germ plasm-associated piRNA (piwi-interacting RNA) pathway has been shown to be a determinant in the development of animal gonadal germline cells. In the current study, we examined whether this piRNA pathway is involved in the regulation of sex steroid hormones in gonadal development. We firstly established developmental expression patterns of three key piRNA pathway genes (mael, piwi and vasa), during Silurana (Xenopus) tropicalis embryogenesis and early larval development. All three genes exhibit high expression at early developmental stages and have significantly decreased expression thereafter, indicating a very active involvement of piRNA pathway at the beginning of embryogenesis. We further examined gene expression changes of those genes in frog larvae exposed to two sex steroid biosynthesis inhibitors, fadrozole and finasteride, both of which are known to result in male-biased or female-biased phenotypes, respectively. We found that fadrozole and finasteride exposures increased the expression of piRNA pathway genes such as mael and vasa at the larval stage when the expression of piRNA pathway genes is programmed to be very low. Therefore, our results indicate that the piRNA pathway is likely a common pathway by which different sex steroid hormones regulate gonadal sex differentiation.  相似文献   

7.
A key feature of the development of a higher plant is the continuous formation of new organs from the meristems. Originally patterned during embryogenesis, the meristems must activate cell division de novo at the time of germination, in order to initiate post-embryonic development. In a mutagenesis screen aimed at finding new players in early seedling cell division control, we identified ELONGATA3 (ELO3) as a key regulator of meristem cell cycle activation in Arabidopsis. Our results show that plants carrying a hypomorphic allele of ELO3 fail to activate cell division in the meristems following germination, which leads to seedling growth arrest and lethality. Further analyses suggest that this is due to a failure in DNA replication, followed by cell cycle arrest, in the meristematic tissue. Interestingly, the meristem cell cycle arrest in elo3 mutants, but not the later leaf developmental defects that have been linked to the loss of ELO3 activities, can be relieved by the addition of metabolic sugars in the growth medium. This finding points to a new role by which carbohydrate availability promotes meristem growth. Furthermore, growth arrested elo3 mutants suffer a partial loss of shoot meristem identity, which provides further evidence that cell cycle activities can influence the control of tissue identity.  相似文献   

8.
The Bestrophin-1/VMD2 gene has been implicated in Best disease, a juvenile-onset vitelliform macular dystrophy. The Bestrophin proteins have anion channel activity, and the four mammalian members share sequence homologies in multiple transmembrane domains and an RFP-tripeptide motif. The expression patterns and functions of the Bestrophin genes in retinal pigment epithelium have been studied intensively, whereas little is known about their roles in vertebrate embryogenesis. This study examined the roles of four Xenopus tropicalis homologs of BEST genes. The xtBest genes showed spatially and temporally distinct expression. xtBest-2 was the only maternally expressed Best gene, and both xtBest-2 and the Xenopus laevis Best-2 gene were expressed at the edge of the blastopore lip including the organizer. Ectopic expression of xBest-2 caused defects in dorsal axis formation and in mesodermal gene expression during gastrulation. These results suggest a new role of the Bestrophin family genes in early vertebrate embryogenesis.  相似文献   

9.
The entomopathogen Bacillus sphaericus is one of the most effective biolarvicides used to control the Culex species of mosquito. The appearance of resistance in mosquitoes to this bacterium, however, remains a threat to its continuous use in integrated mosquito control programs. Previous work showed that the resistance to B. sphaericus in Culex colonies was associated with the absence of the 60-kDa binary toxin receptor (Cpm1/Cqm1), an alpha-glucosidase present in the larval midgut microvilli. In this work, we studied the molecular basis of the resistance developed by Culex quinquefasciatus to B. sphaericus C3-41. The cqm1 genes were cloned from susceptible (CqSL) and resistant (CqRL/C3-41) colonies, respectively. The sequence of the cDNA and genomic DNA derived from CqRL/C3-41 colony differed from that of CqSL one by a one-nucleotide deletion which resulted in a premature stop codon, leading to production of a truncated protein. Recombinant Cqm1S from the CqSL colony expressed in Escherichia coli specifically bound to the Bin toxin and had α-glucosidase activity, whereas the Cqm1R from the CqRL/C3-41 colony, with a deletion of three quarters of the receptor’s C-terminal lost its α-glucosidase activity and could not bind to the binary toxin. Immunoblotting experiments showed that Cqm1 was undetectable in CqRL/C3-41 larvae, although the gene was correctly transcribed. Thus, the cqm1R represents a new allele in C. quinquefasciatus that confers resistance to B. sphaericus.  相似文献   

10.
11.
12.
Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller “incisor field” forms in Pax9+/−;Msx1+/− mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia.  相似文献   

13.
The RAPTOR/KOG1 proteins are binding partners of the target of rapamycin (TOR) kinase that is present in all eucaryotes and plays a central role in the stimulation of cell growth and metabolism in response to nutrients. We show in this report that two genes are coding for RAPTOR/KOG1 homologs in the Arabidopsis and rice genomes. Disruption of the Arabidopsis AtRaptor1 gene leads to a very early arrest of embryo development whereas disruption of the AtRaptor2 gene, which is expressed at a lower level than AtRaptor1, has no visible effects on embryo and plant development. We also observed that mutations in the AtRaptor1 gene result in an earlier halt of embryo development than disruption of the AtTor gene.  相似文献   

14.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

15.
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.  相似文献   

16.
The ultrastructure of septa and septum-associated septal pore caps are important taxonomic markers in the Agaricomycotina (Basidiomycota, Fungi). The septal pore caps covering the typical basidiomycetous dolipore septum are divided into three main phenotypically recognized morphotypes: vesicular-tubular (including the vesicular, sacculate, tubular, ampulliform, and globular morphotypes), imperforate, and perforate. Until recently, the septal pore cap-type reflected the higher-order relationships within the Agaricomycotina. However, the new classification of Fungi resulted in many changes including revision of existing and addition of new orders. Therefore, the septal pore cap ultrastructure of more than 325 species as reported in literature was related to this new classification. In addition, the septal pore cap ultrastructures of Rickenella fibula and Cantharellus formosus were examined by transmission electron microscopy. Both fungi have dolipore septa associated with perforate septal pore caps. These results combined with data from the literature show that the septal pore cap-type within orders of the Agaricomycotina is generally monomorphic, except for the Cantharellales and Hymenochaetales.It appears from the fungal phylogeny combined with the septal pore cap ultrastructure that the vesicular-tubular and the imperforate type both may have arisen from endoplasmic reticulum. Thereafter, the imperforate type eventually gave rise to the perforate septal pore cap-type.  相似文献   

17.
18.
The origin of new morphological structures requires the establishment of new genetic regulatory circuits to control their development, from initial specification to terminal differentiation. The upstream regulatory genes are usually the first to be identified, while the mechanisms that translate novel regulatory information into phenotypic diversity often remain obscure. In particular, elaborate sex-specific structures that have evolved in many animal lineages are inevitably controlled by sex-determining genes, but the genetic basis of sexually dimorphic cell differentiation is rarely understood. In this report, we examine the role of dachshund (dac), a gene with a deeply conserved function in sensory organ and appendage development, in the sex comb, a recently evolved male-specific structure found in some Drosophila species. We show that dac acts during metamorphosis to restrict sex comb development to the appropriate leg region. Localized repression of dac by the sex determination pathway is necessary for male-specific morphogenesis of sex comb bristles. This pupal function of dac is separate from its earlier role in leg patterning, and Dac at this stage is not dependent on the pupal expression of Distalless (Dll), the main regulator of dac during the larval period. Dll acts in the epithelial cells surrounding the sex comb during pupal development to promote sex comb rotation, a complex cellular process driven by coordinated cell rearrangement. Our results show that genes with well-conserved developmental functions can be re-used at later stages in development to regulate more recently evolved traits. This mode of gene co-option may be an important driver of evolutionary innovations.  相似文献   

19.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   

20.
The Abildgaardieae tribe within the family Cyperaceae comprises six or seven genera, among which Abildgaardia, Bulbostylis and Fimbristylis pose a challenge regarding their morphological delimitation. Molecular phylogenetic analyses including species of Abildgaardieae are rare, but in most of those studies, Abildgaardia and Fimbristylis appear as more closely related to each other than to the Bulbostylis genus. Duration of the style base has been one of the most widely used characters for delimiting these three genera. The style base is a persistent structure in most species of Bulbostylis and deciduous in Abildgaardia and Fimbristylis. The reasons why the style base may persist or fall off have been scarcely discussed. The assumption that abscission layers are present in the style base of all three genera and the fact that tracheids have been observed in the style base of Bulbostylis suggest that this structure might have histological complexity. In view of this, a complete ontogenetic and anatomical study of the gynoecium has been carried out for all these three genera. It turned out that the style base is histologically simple in Abildgaardia, Bulbostylis and Fimbristylis and shows similar structure and development in all three genera. The fact that the style base has a shorter duration in Abildgaardia and Fimbristylis than in Bulbostylis might be related to the lower number of sclerotised cells that make up such structures in the mature fruit of the former two genera. Abscission of the style and style base may be the result of much simpler reasons than the differentiation of an abscission layer, resulting merely from mechanical shear force effects. Differences among genera have been observed in the shape of the style base and the development of the style. The histological simplicity of the style base is consistent with the homoplastic appearance of this structure in genera that are not closely related (e.g. Rhynchospora). Because of this, while the presence of the thickened style base seems to be a synapomorphy in species of Abildgaardieae, its persistence on or detachment from the fruit might have emerged repeatedly during this clade evolution and might not be a suitable character for genera delimitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号