首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinesin-1 and dynein are recruited to the nuclear envelope by the Caenorhabditis elegans klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 to move nuclei. The mechanisms of how these motors are coordinated to mediate nuclear migration are unknown. Time-lapse differential interference contrast and fluorescence imaging of embryonic hypodermal nuclear migration events were used to characterize the kinetics of nuclear migration and determine microtubule dynamics and polarity. Wild-type nuclei display bidirectional movements during migration and are also able to roll past cytoplasmic granules. unc-83, unc-84, and kinesin-1 mutants have severe nuclear migration defects. Without dynein, nuclear migration initiates normally but lacks bidirectional movement and shows defects in nuclear rolling, implicating dynein in resolution of cytoplasmic roadblocks. Microtubules are highly dynamic during nuclear migration. EB1::green fluorescence protein imaging demonstrates that microtubules are polarized in the direction of nuclear migration. This organization of microtubules fits with our model that kinesin-1 moves nuclei forward and dynein functions to move nuclei backward for short stretches to bypass cellular roadblocks.  相似文献   

2.
UNC-84 is required to localize UNC-83 to the nuclear envelope where it functions during nuclear migration. A KASH domain in UNC-83 was identified. KASH domains are conserved in the nuclear envelope proteins Syne/nesprins, Klarsicht, MSP-300, and ANC-1. Caenorhabditis elegans UNC-83 was shown to localize to the outer nuclear membrane and UNC-84 to the inner nuclear membrane in transfected mammalian cells, suggesting the KASH and SUN protein targeting mechanisms are conserved. Deletion of the KASH domain of UNC-83 blocked nuclear migration and localization to the C. elegans nuclear envelope. Some point mutations in the UNC-83 KASH domain disrupted nuclear migration, even if they localized normally. At least two separable portions of the C-terminal half of UNC-84 were found to interact with the UNC-83 KASH domain in a membrane-bound, split-ubiquitin yeast two-hybrid system. However, the SUN domain was essential for UNC-84 function and UNC-83 localization in vivo. These data support the model that KASH and SUN proteins bridge the nuclear envelope, connecting the nuclear lamina to cytoskeletal components. This mechanism seems conserved across eukaryotes and is the first proposed mechanism to target proteins specifically to the outer nuclear membrane.  相似文献   

3.
4.
Mutations in the Caenorhabditis elegans unc-84 gene cause defects in nuclear migration and anchoring. We show that endogenous UNC-84 protein colocalizes with Ce-lamin at the nuclear envelope and that the envelope localization of UNC-84 requires Ce-lamin. We also show that during mitosis, UNC-84 remains at the nuclear periphery until late anaphase, similar to known inner nuclear membrane proteins. UNC-84 protein is first detected at the 26-cell stage and thereafter is present in most cells during development and in adults. UNC-84 is properly expressed in unc-83 and anc-1 lines, which have phenotypes similar to unc-84, suggesting that neither the expression nor nuclear envelope localization of UNC-84 depends on UNC-83 or ANC-1 proteins. The envelope localization of Ce-lamin, Ce-emerin, Ce-MAN1, and nucleoporins are unaffected by the loss of UNC-84. UNC-84 is not required for centrosome attachment to the nucleus because centrosomes are localized normally in unc-84 hyp7 cells despite a nuclear migration defect. Models for UNC-84 localization are discussed.  相似文献   

5.
Approximately 100 proteins are targeted to the inner nuclear membrane (INM), where they regulate chromatin and nuclear dynamics. The mechanisms underlying trafficking to the INM are poorly understood. The Caenorhabditis elegans SUN protein UNC-84 is an excellent model to investigate such mechanisms. UNC-84 recruits KASH proteins to the outer nuclear membrane to bridge the nuclear envelope (NE), mediating nuclear positioning. UNC-84 has four targeting sequences: two classical nuclear localization signals, an INM sorting motif, and a signal conserved in mammalian Sun1, the SUN--nuclear envelope localization signal. Mutations in some signals disrupt the timing of UNC-84 nuclear envelope localization, showing that diffusion is not sufficient to move all UNC-84 to the NE. Thus targeting UNC-84 requires an initial step that actively transports UNC-84 from the peripheral endoplasmic reticulum to the NE. Only when all four signals are simultaneously disrupted does UNC-84 completely fail to localize and to function in nuclear migration, meaning that at least three signals function, in part, redundantly to ensure proper targeting of UNC-84. Multiple mechanisms might also be used to target other proteins to the INM, thereby ensuring their proper and timely localization for essential cellular and developmental functions.  相似文献   

6.
Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus.  相似文献   

7.
A close association must be maintained between the male pronucleus and the centrosomes during pronuclear migration. In C. elegans, simultaneous depletion of inner nuclear membrane LEM proteins EMR-1 and LEM-2, depletion of the nuclear lamina proteins LMN-1 or BAF-1, or the depletion of nuclear import components leads to embryonic lethality with small pronuclei. Here, a novel centrosome detachment phenotype in C. elegans zygotes is described. Zygotes with defects in the nuclear envelope had small pronuclei with a single centrosome detached from the male pronucleus. ZYG-12, SUN-1, and LIS-1, which function at the nuclear envelope with dynein to attach centrosomes, were observed at normal concentrations on the nuclear envelope of pronuclei with detached centrosomes. Analysis of time-lapse images showed that as mutant pronuclei grew in surface area, they captured detached centrosomes. Larger tetraploid or smaller histone::mCherry pronuclei suppressed or enhanced the centrosome detachment phenotype respectively. In embryos fertilized with anucleated sperm, only one centrosome was captured by small female pronuclei, suggesting the mechanism of capture is dependent on the surface area of the outer nuclear membrane available to interact with aster microtubules. We propose that the limiting factor for centrosome attachment to the surface of abnormally small pronuclei is dynein.  相似文献   

8.
Yamashita A  Yamamoto M 《Genetics》2006,173(3):1187-1196
During meiotic prophase in the fission yeast Schizosaccharomyces pombe, the nucleus oscillates between the two ends of a cell. This oscillatory nuclear movement is important to promote accurate pairing of homologous chromosomes and requires cytoplasmic dynein. Dynein accumulates at the points where microtubule plus ends contact the cell cortex and generate a force to drive nuclear oscillation. However, it remains poorly understood how dynein associates with the cell cortex. Here we show that S. pombe Num1p functions as a cortical-anchoring factor for dynein. Num1p is expressed in a meiosis-specific manner and localized to the cell cortex through its C-terminal PH domain. The num1 deletion mutant shows microtubule dynamics comparable to that in the wild type. However, it lacks cortical accumulation of dynein and is defective in the nuclear oscillation as is the case for the dynein mutant. We also show that Num1p can recruit dynein independently of the CLIP-170 homolog Tip1p.  相似文献   

9.
In a genetic screen for Kinesin heavy chain (Khc)-interacting proteins, we identified APLIP1, a neuronally expressed Drosophila homolog of JIP-1, a JNK scaffolding protein . JIP-1 and its homologs have been proposed to act as physical linkers between kinesin-1, which is a plus-end-directed microtubule motor, and certain anterograde vesicles in the axons of cultured neurons . Mutation of Aplip1 caused larval paralysis, axonal swellings, and reduced levels of both anterograde and retrograde vesicle transport, similar to the effects of kinesin-1 inhibition. In contrast, Aplip1 mutation caused a decrease only in retrograde transport of mitochondria, suggesting inhibition of the minus-end microtubule motor cytoplasmic dynein . Consistent with dynein defects, combining heterozygous mutations in Aplip1 and Dynein heavy chain (Dhc64C) generated synthetic axonal transport phenotypes. Thus, APLIP1 may be an important part of motor-cargo linkage complexes for both kinesin-1 and dynein. However, it is also worth considering that APLIP1 and its associated JNK signaling proteins could serve as an important signaling module for regulating transport by the two opposing motors.  相似文献   

10.
A Schizosaccharomyces pombe spindle pole body (SPB) protein interacts in a two-hybrid system with Dlc1, which belongs to the 14-kDa Tctex-1 dynein light chain family. Green fluorescent protein-tagged Dlc1 accumulated at the SPB throughout the life cycle. During meiotic prophase, Dlc1 was present along astral microtubules and microtubule-anchoring sites on the cell cortex, reminiscent of the cytoplasmic dynein heavy chain Dhc1. In a dlc1-null mutant, Dhc1-dependent nuclear movement in meiotic prophase became irregular in its duration and direction. Dhc1 protein was displaced from the cortex anchors and the formation of microtubule bundle(s) that guide nuclear movement was impaired in the mutant. Meiotic recombination in the dlc1 mutant was reduced to levels similar to that in the dhc1 mutant. Dlc1 and Dhc1 also have roles in karyogamy and rDNA relocation during the sexual phase. Strains mutated in both the dlc1 and dhc1 loci displayed more severe defects in recombination, karyogamy, and sporulation than in either single mutant alone, suggesting that Dlc1 is involved in nuclear events that are independent of Dhc1. S. pombe contains a homolog of the 8-kDa dynein light chain, Dlc2. This class of dynein light chain, however, is not essential in either the vegetative or sexual phases.  相似文献   

11.
Bidirectional membrane trafficking along microtubules is mediated by kinesin-1, kinesin-3, and dynein. Several organelle-bound adapters for kinesin-1 and dynein have been reported that orchestrate their opposing activity. However, the coordination of kinesin-3/dynein-mediated transport is not understood. In this paper, we report that a Hook protein, Hok1, is essential for kinesin-3– and dynein-dependent early endosome (EE) motility in the fungus Ustilago maydis. Hok1 binds to EEs via its C-terminal region, where it forms a complex with homologues of human fused toes (FTS) and its interactor FTS- and Hook-interacting protein. A highly conserved N-terminal region is required to bind dynein and kinesin-3 to EEs. To change the direction of EE transport, kinesin-3 is released from organelles, and dynein binds subsequently. A chimaera of human Hook3 and Hok1 rescues the hok1 mutant phenotype, suggesting functional conservation between humans and fungi. We conclude that Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional EE trafficking by controlling attachment of both kinesin-3 and dynein.  相似文献   

12.
Regulation of cell division requires the concerted function of proteins and protein complexes that properly mediate cytoskeletal dynamics. NudC is an evolutionarily conserved protein of undetermined function that associates with microtubules and interacts with several key regulators of mitosis, such as polo-kinase 1 (Plk1) and dynein. NudC is essential for proper mitotic progression, and homologs have been identified in species ranging from fungi to humans. In this paper, we report the characterization of the Caenorhabditis elegans NudC homolog, NUD-1, as a protein exhibiting molecular chaperone activity. All NudC/NUD-1 proteins share a conserved p23/HSP20 domain predicted by three-dimensional modeling [Garcia-Ranea, Mirey, Camonis, Valencia, FEBS Lett 529(2–3):162–167, 2002]. We demonstrate that nematode NUD-1 is able to prevent the aggregation of two substrate proteins, citrate synthase (CS) and luciferase, at stoichiometric concentrations. Further, NUD-1 also protects the native state of CS from thermal inactivation by significantly reducing the inactivation rate of this enzyme. To further determine if NUD-1/substrate complexes were productive or simply “dead-end” unfolding intermediates, a luciferase refolding assay was utilized. Following thermal denaturation, rabbit reticulocyte lysate and ATP were added and luciferase activity measured. In the presence of NUD-1, nearly all of the luciferase activity was regained, indicating that unfolded intermediates complexed with NUD-1 could be refolded. These studies represent the first functional evidence for a member of this mitotically essential protein family as having chaperone activity and facilitates elucidation of the role such proteins play in chaperone complexes utilized in cell division. C. elegans NUD-1 is a member of an evolutionary conserved protein family of unknown function involved in the regulation of cytoskeletal dynamics. NUD-1 and its mammalian homolog, NudC, function with the dynein motor complex to ensure proper cell division, and knockdown or overexpression of these proteins leads to disruption of mitosis. In this paper, we show that NUD-1 possesses ATP-independent chaperone activity comparable to that of small heat shock proteins and cochaperones and that changes in phosphorylation state functionally alter chaperone activity in a phosphomimetic NUD-1 mutant.  相似文献   

13.
The RHO1 gene encodes a yeast homolog of the mammalian RhoA protein. Rho1p is localized to the growth sites and is required for bud formation. We have recently shown that Bni1p is one of the potential downstream target molecules of Rho1p. The BNI1 gene is implicated in cytokinesis and the establishment of cell polarity in Saccharomyces cerevisiae but is not essential for cell viability. In this study, we screened for mutations that were synthetically lethal in combination with a bni1 mutation and isolated two genes. They were the previously identified PAC1 and NIP100 genes, both of which are implicated in nuclear migration in S. cerevisiae. Pac1p is a homolog of human LIS1, which is required for brain development, whereas Nip100p is a homolog of rat p150(Glued), a component of the dynein-activated dynactin complex. Disruption of BNI1 in either the pac1 or nip100 mutant resulted in an enhanced defect in nuclear migration, leading to the formation of binucleate mother cells. The arp1 bni1 mutant showed a synthetic lethal phenotype while the cin8 bni1 mutant did not, suggesting that Bni1p functions in a kinesin pathway but not in the dynein pathway. Cells of the pac1 bni1 and nip100 bni1 mutants exhibited a random distribution of cortical actin patches. Cells of the pac1 act1-4 mutant showed temperature-sensitive growth and a nuclear migration defect. These results indicate that Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton. Bni1p lacking the Rho-binding region did not suppress the pac1 bni1 growth defect, suggesting a requirement for the Rho1p-Bni1p interaction in microtubule function.  相似文献   

14.
Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ~1.0 μm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.  相似文献   

15.
The heavy chain of cytoplasmic dynein is required for nuclear migration in Aspergillus nidulans and other fungi. Here we report on a new gene required for nuclear migration, nudG, which encodes a homologue of the “8-kD” cytoplasmic dynein light chain (CDLC). We demonstrate that the temperature sensitive nudG8 mutation inhibits nuclear migration and growth at restrictive temperature. This mutation also inhibits asexual and sexual sporulation, decreases the intracellular concentration of the nudG CDLC protein and causes the cytoplasmic dynein heavy chain to be absent from the mycelial tip, where it is normally located in wild-type mycelia. Coimmunoprecipitation experiments with antibodies against the cytoplasmic dynein heavy chain (CDHC) and the nudG CDLC demonstrated that some fraction of the cytoplasmic dynein light chain is in a protein complex with the CDHC. Sucrose gradient sedimentation analysis, however, showed that not all of the NUDG protein is complexed with the heavy chain. A double mutant carrying a cytoplasmic dynein heavy chain deletion plus a temperature-sensitive nudG mutation grew no more slowly at restrictive temperature than a strain with only the CDHC deletion. This result demonstrates that the effect of the nudG mutation on nuclear migration and growth is mediated through an interaction with the CDHC rather than with some other molecule (e.g., myosin-V) with which the 8-kD CDLC might theoretically interact.  相似文献   

16.
Nuclear translocation, driven by the motility apparatus consisting of the cytoplasmic dynein motor and microtubules, is essential for cell migration during embryonic development. Bicaudal-D (Bic-D), an evolutionarily conserved dynein-interacting protein, is required for developmental control of nuclear migration in Drosophila. Nothing is known about the signaling events that coordinate the function of Bic-D and dynein during development. Here, we show that Misshapen (Msn), the fly homolog of the vertebrate Nck-interacting kinase is a component of a novel signaling pathway that regulates photoreceptor (R-cell) nuclear migration in the developing Drosophila compound eye. Msn, like Bic-D, is required for the apical migration of differentiating R-cell precursor nuclei. msn displays strong genetic interaction with Bic-D. Biochemical studies demonstrate that Msn increases the phosphorylation of Bic-D, which appears to be necessary for the apical accumulation of both Bic-D and dynein in developing R-cell precursor cells. We propose that Msn functions together with Bic-D to regulate the apical localization of dynein in generating directed nuclear migration within differentiating R-cell precursor cells.  相似文献   

17.
Kinesin-1 is a heterotetramer composed of kinesin heavy chain (KHC) and kinesin light chain (KLC). The Caenorhabditis elegans genome has a single KHC, encoded by the unc-116 gene, and two KLCs, encoded by the klc-1 and klc-2 genes. We show here that UNC-116/KHC and KLC-2 form a complex orthologous to conventional kinesin-1. KLC-2 also binds UNC-16, the C. elegans JIP3/JSAP1 JNK-signaling scaffold protein, and the UNC-14 RUN domain protein. The localization of UNC-16 and UNC-14 depends on kinesin-1 (UNC-116 and KLC-2). Furthermore, mutations in unc-16, klc-2, unc-116, and unc-14 all alter the localization of cargos containing synaptic vesicle markers. Double mutant analysis is consistent with these four genes functioning in the same pathway. Our data support a model whereby UNC-16 and UNC-14 function together as kinesin-1 cargos and regulators for the transport or localization of synaptic vesicle components.  相似文献   

18.
Nuclear movement is critical for several developmental processes in eukaryotes. Drosophila oogenesis provides a paradigmatic example in which localization of the nucleus generates a source of cellular asymmetry that is used in patterning both the anterior-posterior and the dorsal-ventral axes of the oocyte. In this study we show that mutations in the Drosophila Lissencephaly1 (DLis1) gene result in partial ventralization of the eggshell. DLis1 mutations affect the localization of gurken mRNA and protein in the oocyte. These defects are correlated with incorrect positioning of the oocyte nucleus, suggesting that DLis1 is required for nuclear migration. DLis1 shows significant sequence conservation across the evolutionary spectrum. Fungal cognates of DLis1 are involved in nuclear migration while homologs in humans and mice are implicated in neuronal migration. DLis1 shows genetic interactions with the Glued and Dynein heavy chain subunits of the dynein/dynactin complex, supporting the idea that the Lis1 family of proteins plays a role in microtubule motor-based nuclear motility.  相似文献   

19.
The SUN proteins are a conserved family of proteins in eukaryotes. Human UNC84A (Sun1) is a homolog of Caenorhabditis elegans UNC-84, a protein involved in nuclear anchorage and migration. We have analyzed targeting of UNC84A to the nuclear envelope (NE) and show that the N-terminal 300 amino acids are crucial for efficient NE localization of UNC84A whereas the conserved C-terminal SUN domain is not required. Furthermore, we demonstrate by combining RNA interference with immunofluorescence and fluorescence recovery after photobleaching analysis that localization and anchoring of UNC84A is not dependent on the lamin proteins, in contrast to what had been observed for C. elegans UNC-84.  相似文献   

20.
Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JNK kinases result in similar mislocalization of synaptic vesicle markers and enhance weak unc-16 mutant phenotypes. unc-116 kinesin heavy chain mutants also mislocalize synaptic vesicle markers, as well as a functional UNC-16::GFP. Intriguingly, unc-16 mutations partially suppress the vesicle retention defect in unc-104 KIF1A kinesin mutants. Our results suggest that UNC-16 may regulate the localization of vesicular cargo by integrating JNK signaling and kinesin-1 transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号