首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a “bend and zipper” model for insect head capsule formation.  相似文献   

2.
3.
Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.  相似文献   

4.
The insect intercalary segment represents a small and appendage-less head segment that is homologous to the second antennal segment of Crustacea and the pedipalpal segment in Chelicerata, which are generally referred to as “tritocerebral segment.” In Drosophila, the gene collier (col) has an important role for the formation of the intercalary segment. Here we show that in the beetle Tribolium castaneum col is required for the activation of the segment polarity genes hedgehog (hh), engrailed (en) and wingless (wg) in the intercalary segment, and is a regulatory target of the intercalary segment specific Hox gene labial (lab). Loss of Tc col function leads to increased cell death in the intercalary segment. In the milkweed bug Oncopeltus fasciatus, the loss of col function has a more severe effect in lacking the intercalary segment and also affecting the adjacent mandibular and antennal segments. By contrast, col is not expressed early in the second antennal segment in the crustacean Parhyale hawaiensis or in the pedipalpal segment of the spider Achaearanea tepidariorum. This suggests that the early expression of col in a stripe and its role in tritocerebral segment development is insect-specific and might correlate with the appendage-less morphology of the intercalary segment.  相似文献   

5.
6.
7.
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.  相似文献   

8.
9.
10.
11.
Pterygotes lack abdominal appendages except for pleuropods and prolegs. The larvae of some holometabolous insects develop prolegs, which are used for locomotion. We analyzed the role of the homeotic genes abd-A and Abd-B in lepidopteran proleg development using mutant analysis and embryonic RNAi in the silkworm Bombyx mori. The EMu mutant developed extra prolegs in its posterior abdomen and showed the misexpression of both genes, suggesting their involvement in proleg formation. The depletion of Abd-B by embryonic RNAi caused the development of extra prolegs on all segments posterior to A6, indicating the suppressive function of Abd-B. The abd-A RNAi animals failed to develop prolegs. These results indicate that abd-A and Abd-B are involved in proleg development in B. mori.  相似文献   

12.
13.
14.
15.
In the mouse, the Otx2 gene has been shown to play essential roles in the visceral endoderm during anterior-posterior axis formation and head induction. While these are primary processes in vertebrate embryogenesis, the visceral endoderm is a tissue unique to mammals. Two enhancers (VE and CM) have been previously found to direct Otx2 expression during early embryogenesis. This study demonstrates that in anterior visceral endoderm the CM enhancer does not have an activity by itself, but enhances the activity of the VE enhancer. These two enhancers also cooperate for the activities in anterior mesendoderm and cephalic mesenchyme. Comparative studies suggest that VE enhancer function was most likely established before the divergence of sarcopterygians into Actinistia, Dipnoi and tetrapods, while the nucleotide sequence corresponding to the VE enhancer was already present in the last common ancestor of bony fishes. The CM enhancer sequence and function would have been also established in ancestral sarcopterygians. The VE/CM enhancers and their gene cascades in the ancestral sarcopterygian head organizer would then have been co-opted by amphibian deep endoderm cells and mammalian visceral endoderm cells for the head development.  相似文献   

16.
The Drosophila dorsal vessel is a segmentally repeated linear organ, in which seven-up (svp) is expressed in two pairs of cardioblasts and two pairs of pericardial cells in each segment. Under the control of hedgehog (hh) signaling from the dorsal ectoderm, svp participates in diversifying cardioblast identities within each segment. In this experiment, the homozygous embryos of svp mutants exhibited an increase in cell size of Eve positive pericardial cells (EPCs) and a disarranged expression pattern, while the cardioblasts pattern of svp-lacZ expression was normal. In the meantime, the DA1 muscle founders were absent in some segments in svp mutant embryos, and the dorsal somatic muscle patterning was also severely damaged in the late stage mutant embryos, suggesting that svp is required for the differentiation of Eve-positive pericardial cells and DA1 muscle founders and may have a role in EPC cell growth.  相似文献   

17.
Segment formation in the long germ insect Drosophila is dominated by overlapping gap gene domains in the syncytial blastoderm. In the short germ beetle Tribolium castaneum abdominal segments arise from a cellular growth zone, implying different patterning mechanisms. We describe here the single Tribolium ortholog of the Drosophila genes knirps and knirps-related (called Tc-knirps). Tc-knirps expression is conserved during head patterning and at later stages. However, posterior Tc-knirps expression in the ectoderm is limited to a stripe in A1, instead of a broad abdominal domain covering segment primordia A2-A5 as in Drosophila. Tc-knirps RNAi yields only mild defects in the abdomen, at a position posterior to the abdominal Tc-knirps domain. In addition, Tc-knirps RNAi larvae lack the antennal and mandibular segments. These defects are much more severe than the head defects caused by combined inactivation of Dm-knirps and Dm-knirps-related. Our findings support the notion that the role of gap gene homologs in abdominal segmentation differs fundamentally in long and short germ insects. Moreover, the pivotal role of Tc-knirps in the head suggests an ancestral role for knirps as head patterning gene. Based on this RNAi analysis, Tc-knirps functions neither in the head nor the abdomen as a canonical gap gene.  相似文献   

18.
The Type IV Secretion System (T4SS) is an efficient pathway with which bacteria can mediate the transfer of DNA and/or proteins to eukaryotic cells. In Wolbachia pipientis, a maternally inherited obligate endosymbiont of arthropods and nematodes, two operons of vir genes, virB3-B6 and virB8-D4, encoding a T4SS were previously identified and characterized at two separate genomic loci. Using the largest data set of Wolbachia strains studied so far, we show that vir gene sequence and organization are strictly conserved among 37 Wolbachia strains inducing various phenotypes such as cytoplasmic incompatibility, feminization, or oogenesis in their arthropod hosts. In sharp contrast, extensive variation of genomic sequences flanking the virB8-D4 operon suggested its distinct location among Wolbachia genomes. Long term conservation of the T4SS may imply maintenance of a functional effector translocation system in Wolbachia, thereby suggesting the importance for the T4SS in Wolbachia biology and survival inside host cells.  相似文献   

19.
Insect embryo segmentation is largely divided into long and short germ types. In the long germ type, each segment primordium is represented on a large embryonic rudiment of the blastoderm, and segmental patterning occurs nearly simultaneously in the syncytium. In the short germ type, however, only anterior segments are represented in the small embryonic rudiment, usually located on the egg posterior, and the rest of the segments are added sequentially from the posterior growth zone in a cellular context. The long germ type is thought to have evolved from the short germ type. It is proposed that this transition, which appears to have occurred multiple times over the course of evolution, was realized through the acquisition of a localized anterior instruction center. Here, I examined the early segmentation process in the silkmoth Bombyx mori, a lepidopteran insect, in which the mechanisms of anterior-posterior (AP) axis formation have not been well analyzed. In this insect, both the long germ and short germ features have been reported. The mRNAs for two key genes involved in insect AP axis formation, orthodenticle (Bm-otd) and caudal (Bm-cad), are localized maternally in the germ anlage, where they act as anterior and posterior instruction centers, respectively. RNAi studies indicate that, while Bm-cad affects the formation of all the even skipped (Bm-eve) stripes, there is also anterior Bm-eve stripe formation activity that involves Bm-otd. Thus, there is redundancy in Bm-eve stripe formation activity that must be coordinated. Some genetic interactions, identified either experimentally or hypothetically, are also introduced, which might enable robust AP formation in this organism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号