共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The vertebrate hindbrain is segmented into an array of rhombomeres (r), but it remains to be fully understood how segmentation is achieved. Here we report that reducing meis function transforms the caudal hindbrain to an r4-like fate, and we exploit this experimental state to explore how r4 versus r5-r6 segments are set aside. We demonstrate that r4 transformation of the caudal hindbrain is mediated by paralog group 1 (PG1) hox genes and can be repressed by vhnf1, a gene expressed in r5-r6. We further find that vhnf1 expression is regulated by PG1 hox genes in a meis-dependent manner. This implies that PG1 hox genes not only induce r4 fates throughout the caudal hindbrain, but also induce expression of vhnf1, which then represses r4 fates in the future r5-r6. Our results further indicate that r4 transformation of the caudal hindbrain occurs at intermediate levels of meis function, while extensive removal of meis function produces a hindbrain completely devoid of segments, suggesting that different hox-dependent processes may have distinct meis requirements. Notably, reductions in the function of another Hox cofactor, pbx, have not been reported to transform the caudal hindbrain, suggesting that Meis and Pbx proteins may also function differently in their roles as Hox cofactors. 相似文献
5.
Cell fate specification during inner ear development is dependent upon regional gene expression within the otic vesicle. One of the earliest cell fate determination steps in this system is the specification of neural precursors, and regulators of this process include the Atonal-related basic helix-loop-helix genes, Ngn1 and NeuroD and the T-box gene, Tbx1. In this study we demonstrate that Eya1 signaling is critical to the normal expression patterns of Tbx1, Ngn1, and NeuroD in the developing mouse otocyst. We discuss a potential mechanism for the absence of neural precursors in the Eya1-/- inner ears and the primary and secondary mechanisms for the loss of cochleovestibular ganglion cells in the Eya1bor/bor hypomorphic mutant. 相似文献
6.
7.
Tümpel S Cambronero F Ferretti E Blasi F Wiedemann LM Krumlauf R 《Developmental biology》2007,302(2):646-660
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning. 相似文献
8.
Ryan B. MacDonald Jacob N. Pollack Mélanie Debiais-Thibaud Eglantine Heude Jared Coffin Talbot Marc Ekker 《Developmental biology》2013
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon. 相似文献
9.
Garrett A. Soukup Bernd Fritzsch Michael D. Weston Michael T. McManus 《Developmental biology》2009,328(2):328-654
Inner ear development requires coordinated transformation of a uniform sheet of cells into a labyrinth with multiple cell types. While numerous regulatory proteins have been shown to play critical roles in this process, the regulatory functions of microRNAs (miRNAs) have not been explored. To demonstrate the importance of miRNAs in inner ear development, we generated conditional Dicer knockout mice by the expression of Cre recombinase in the otic placode at E8.5. Otocyst-derived ganglia exhibit rapid neuron-specific miR-124 depletion by E11.5, degeneration by E12.5, and profound defects in subsequent sensory epithelial innervations by E17.5. However, the small and malformed inner ear at E17.5 exhibits residual and graded hair cell-specific miR-183 expression in the three remaining sensory epithelia (posterior crista, utricle, and cochlea) that closely corresponds to the degree of hair cell and sensory epithelium differentiation, and Fgf10 expression required for morphohistogenesis. The highest miR-183 expression is observed in near-normal hair cells of the posterior crista, whereas the reduced utricular macula demonstrates weak miR-183 expression and develops presumptive hair cells with numerous disorganized microvilli instead of ordered stereocilia. The correlation of differential and delayed depletion of mature miRNAs with the derailment of inner ear development demonstrates that miRNAs are crucial for inner ear neurosensory development and neurosensory-dependent morphogenesis. 相似文献
10.
11.
Lecaudey V Ulloa E Anselme I Stedman A Schneider-Maunoury S Pujades C 《Developmental biology》2007,303(1):134-143
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved. 相似文献
12.
Qing-yun Guo Quan-xin Cai Jian-ping Yan Xiao-min Hu Da-sheng Zheng Zhi-ming Yuan 《Journal of insect physiology》2013
The entomopathogen Bacillus sphaericus is one of the most effective biolarvicides used to control the Culex species of mosquito. The appearance of resistance in mosquitoes to this bacterium, however, remains a threat to its continuous use in integrated mosquito control programs. Previous work showed that the resistance to B. sphaericus in Culex colonies was associated with the absence of the 60-kDa binary toxin receptor (Cpm1/Cqm1), an alpha-glucosidase present in the larval midgut microvilli. In this work, we studied the molecular basis of the resistance developed by Culex quinquefasciatus to B. sphaericus C3-41. The cqm1 genes were cloned from susceptible (CqSL) and resistant (CqRL/C3-41) colonies, respectively. The sequence of the cDNA and genomic DNA derived from CqRL/C3-41 colony differed from that of CqSL one by a one-nucleotide deletion which resulted in a premature stop codon, leading to production of a truncated protein. Recombinant Cqm1S from the CqSL colony expressed in Escherichia coli specifically bound to the Bin toxin and had α-glucosidase activity, whereas the Cqm1R from the CqRL/C3-41 colony, with a deletion of three quarters of the receptor’s C-terminal lost its α-glucosidase activity and could not bind to the binary toxin. Immunoblotting experiments showed that Cqm1 was undetectable in CqRL/C3-41 larvae, although the gene was correctly transcribed. Thus, the cqm1R represents a new allele in C. quinquefasciatus that confers resistance to B. sphaericus. 相似文献
13.
Mitsushiro Nakatomi Xiu-Ping Wang Darren Key Jennifer J. Lund Ralf Kist Yiping Chen Heiko Peters 《Developmental biology》2010,340(2):438-4073
Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller “incisor field” forms in Pax9+/−;Msx1+/− mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia. 相似文献
14.
We characterized a novel Bacillus thuringiensis isolate native to China (HS18-1) that shows a spherical crystal harboring two major proteins of about 70 and 130 kDa, and contains three novel cry genes (cry4Cb1, cry30Ga1, cry54-type). Furthermore, the cry4Cb1 and cry30Ga1 genes were expressed in Escherichia coli BL21 (DE3): pLysS. Insecticidal activity tests showed that the cry4Cb1 protein exhibited larvicidal activity against Aedes aegypti (Diptera) and the cry30Ga1 protein was toxic to both A. aegypti and P. xylostella (Lepidoptera). 相似文献
15.
HongKyung Kim Harinarayana Ankamreddy Dong Jin Lee Kyoung-Ah Kong Hyuk Wan Ko Myoung Hee Kim Jinwoong Bok 《Biochemical and biophysical research communications》2014
Pax3 mutations result in malformed inner ears in Splotch mutant mice and hearing loss in humans with Waardenburg’s syndrome type I. In the inner ear, Pax3 is thought to be involved mainly in the development of neural crest. However, recent studies have shown that Pax3-expressing cells contribute extensively to multiple inner ear structures, some of which were considered to be derived from the otic epithelium. To examine the specific functions of Pax3 during inner ear development, fate mapping of Pax3 lineage was performed in the presence or absence of functional Pax3 proteins using Pax3Cre knock-in mice bred to Rosa26 reporter (R26R) line. β-gal-positive cells were widely distributed in Pax3Cre/+; R26R inner ears at embryonic day (E) 15.5, including the endolymphatic duct, common crus, cristae, maculae, cochleovestibular ganglion, and stria vascularis. In the absence of Pax3 in Pax3Cre/Cre; R26R inner ears, β-gal-positive cells disappeared from regions with melanocytes such as the stria vascularis of the cochlea and dark cells in the vestibule. Consistently, the expression of Dct, a melanoblast marker, was also absent in the mutant inner ears. However, when examined at E11.5, β-gal positive cells were present in Pax3Cre/Cre mutant otocysts, whereas Dct expression was absent, suggesting that Pax3 lineage with a melanogenic fate migrated to the inner ear, yet failed to differentiate and survive without Pax3 function. Gross inner ear morphology was generally normal in Pax3Cre/Cre mutants, unless neural tube defects extended to the cranial region. Taken together, these results suggest that despite the extensive contribution of Pax3-expressing cells to multiple inner ear tissues, Pax3 function is required specifically for inner ear components with melanogenic fates. 相似文献
16.
17.
18.
Qingchun Cai 《FEBS letters》2009,583(19):3158-3164
The Hippo-Warts pathway defines a novel signaling cascade involved in organ size control and tumor suppression. However, the developmental function of this pathway is less understood. Here we report that the Caenorhabditis elegans homolog of Warts, Ce-wts-1, plays important roles during worm development. The null allele of Ce-wts-1 causes L1 lethality. Partial loss of Ce-wts-1 function by RNAi reveals that Ce-wts-1 is involved in many developmental processes such as larval development, growth rate regulation, gut granule formation, pharynx development, dauer formation, lifespan and body length control. Genetic analyses show that Ce-wts-1 functions synergistically with the TGF-β Sma/Mab pathway to regulate body length. In addition, CE-WTS-1::GFP is enriched near the inner cell membrane, implying its possible membrane-related function. 相似文献
19.
Gynoecium development is a complex process which is regulated by key factors that control the spatial formation of the apical, medial and basal parts. SHATTERPROOF1 (SHP1) and SHP2, two closely related MADS-box genes, redundantly control the differentiation of the dehiscence zone and promote the lignification of adjacent cells. Furthermore, SHP1 and SHP2 have shown to play an important role in ovule identity determination. The present work identifies a new function for these two genes in promoting stigma, style and medial tissue development. This new role was discovered by combining the shp1 shp2 double mutant with the aintegumenta (ant) and crabs claw (crc) mutants. In quadruple mutant flowers, the inner whorl is composed of unfused carpels which lack almost completely apical and medial tissues, a phenotype similar to the previously reported fil ant and lug ant double mutants. 相似文献