首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytokine-transforming growth factor beta1 (TGFB1) is implicated in development of the mammary gland through regulation of epithelial cell proliferation and differentiation during puberty and pregnancy. We compared mammary gland morphogenesis in virgin Tgfb1(+/+), Tgfb1(+/-), and Tgfb1(-/-) mice and transplanted Tgfb1(+/+) and Tgfb1(-/-) epithelium to determine the impact of TGFB1 deficiency on development. When mammary gland tissue was evaluated relative to the timing of puberty, invasion through the mammary fat pad of the ductal epithelium progressed similarly, irrespective of genotype, albeit fewer terminal end buds were observed in mammary glands from Tgfb1(-/-) mice. The terminal end buds appeared to be normal morphologically, and a comparable amount of epithelial proliferation was evident. When transplanted into wild-type recipients, however, Tgfb1(-/-) epithelium showed accelerated invasion compared with Tgfb1(+/+) epithelium. This suggests that the normal rate of ductal extension in Tgfb1(-/-) null mutant mice is the net result of impaired endocrine or paracrine support acting to limit the consequences of unrestrained epithelial growth. By adulthood, mammary glands in cycling virgin Tgfb1(-/-) mice were morphologically similar to those in Tgfb1(+/+) and Tgfb1(+/-) animals, with a normal branching pattern, and the tissue differentiated into early alveolar structures in the diestrous phase of the ovarian cycle. Transplanted mammary gland epithelium showed a similar extent of ductal branching and evidence of secretory differentiation of luminal cells in pregnancy. These results reveal two opposing actions of TGFB1 during pubertal mammary gland morphogenesis: autocrine inhibition of epithelial ductal growth, and endocrine or paracrine stimulation of epithelial ductal growth.  相似文献   

2.
3.
Systemic growth and branching stimuli, and appropriate interactions with the host stroma are essential for the development of foreign epithelia in the mammary gland of immunodeficient mice. These factors were manipulated to promote and investigate the generation of representative bovine epithelial morphology in the transplanted mouse mammary stroma. The bovine mammary epithelium is unique in its commitment to rapid proliferation and high rate of differentiation. Its morphological organization within a fibrotic stroma resembles that of the human breast, and differs significantly from the rudimentary ductal network that penetrates a fatty stroma in mice. Transplantation of bovine mammary epithelial cells into the cleared mammary fat pad of NOD-SCID mice led to continuous growth of epithelial structures. Multilayered hollow spheres developed within fibrotic areas, but in contrast to mice, no epithelial organization was formed between adipocytes. The multilayered spheres shared characteristics with the heifer gland’s epithelium, including lumen size, cell proliferation, cytokeratin orientation, estrogen/progesterone receptor expression and localization, and milk protein synthesis. However, they did not extend into the mouse fat pad via ductal morphology. Pre-transplantation of fibroblasts increased the number of spheres, but did not promote extension of bovine morphology. The bovine cells preserved their fate and rarely participated in chimeric mouse–bovine outgrowths. Nevertheless, a single case of terminal ductal lobuloalveolar unit (TDLU) development was recorded in mice treated with estrogen and progesterone, implying the feasibility of this representative bovine morphology’s development. In vitro extension of these studies revealed paracrine inhibition of bovine epithelial mammosphere development by adipocytes, which was also generalized to breast epithelial mammosphere formation. The rescue of mammosphere development by fibroblast growth factor administration evidences an active equilibrium between inhibitory and supportive effects exerted by the adipose and fibrotic regions of the stroma, respectively, which determines the development of foreign epithelium.  相似文献   

4.
PECAM-1 (CD31) is a member of the immunoglobin (Ig) superfamily of cell adhesion molecules whose expression is restricted to hematopoietic and vascular cells. PECAM-1 can recruit adapter and signaling molecules via its immunoreceptor tyrosine activation motif (ITAM), suggesting that PECAM-1 plays a role in signal transduction pathways. To study the involvement of PECAM-1 in signaling cascades in vivo, we used the major histocompatibility (MHC) I gene promoter to target ectopic PECAM-1 expression in transgenic mice. We noted an attenuation of mammary gland development at early stages of virgin ductal branching morphogenesis. STAT5a, a modulator of milk protein gene expression during lactation, was localized to the nuclei of ductal epithelial cells of 6-week-old virgin PECAM-1 transgenics, but not in control mice. This correlated with decreases in ductal epithelial cell proliferation and induction of p21, an inhibitor of cell cycle progression. Using in vitro model systems we demonstrated PECAM-1/STAT5a association and found that residue Y701 in PECAM-1's cytoplasmic tail is important for PECAM-1/STAT5 association and that PECAM-1 modulates increases in STAT5a tyrosine phosphorylation levels. We suggest that by serving as a scaffolding, PECAM-1 can bring substrates (STAT5a) and enzymes (a kinase) into close proximity, thereby modulating phosphorylation levels of selected proteins, as previously noted for beta-catenin.  相似文献   

5.
6.
The goat was chosen as the model system for investigating mammary gland development in the ruminant. Histological and immunocytochemical staining of goat mammary tissue at key stages of development was performed to characterize the histogenesis of the ruminant mammary gland. The mammary gland of the virgin adult goat consisted of a ductal system terminating in lobules of ductules. Lobuloalveolar development of ductules occurred during pregnancy and lactation which was followed by the regression of secretory alveoli at involution. The ductal system was separated from the surrounding stroma by a basement membrane which was defined by antisera raised against laminin and Type IV collagen. Vimentin, smooth-muscle actin and myosin monoclonal antisera as well as antisera to cytokeratin 18 and multiple cytokeratins stained a layer of myoepithelial cells which surround the ductal epithelium. Staining of luminal epithelial cells by monoclonal antibodies to cytokeratins was dependent on their location along the ductal system, from intense staining in ducts to variable staining in ductules. The staining of epithelial cells by monoclonals to cytokeratins also varied according to the developmental status of the goat, being maximal in virgin and involuting glands, lowest at lactation and intermediate during gestation. In addition, cuboidal cells, situated perpendicular to myoepithelial cells and adjacent to alveolar cells in secretory alveoli, were also stained by cytokeratin monoclonal antibodies and antisera to the receptor protein, erbB-2, in similar fashion to luminal epithelial cells. These results demonstrate that caprine mammary epithelial cell differentiation along the alveolar pathway is associated with the loss of certain types of cytokeratins and that undifferentiated and secretory alveolar epithelial cells are present within lactating goat mammary alveoli.  相似文献   

7.
8.
9.
S Smith  D Pasco    S Nandi 《The Biochemical journal》1983,212(1):155-159
Epithelial cells were isolated from the undifferentiated mammary glands of mature virgin female rats, and their lipogenic characteristics were studied. These cells synthesized predominantly medium-chain fatty acids, albeit at a low rate. In contrast, whole tissue from mammary glands of virgin rats synthesized predominantly long-chain fatty acids at a relatively higher rate, indicating that the lipogenic activity is dominated by the adipocyte component of the gland. Enzyme assays revealed that thioesterase II, the enzyme which regulates production of medium-chain fatty acids by the fatty acid synthetase, was present at a high activity in the undifferentiated mammary epithelial cells of virgin rats. Immunohistochemical studies confirmed this observation and showed that the regulatory enzyme was present exclusively in the epithelial cells lining the alveolar and ductal elements of the undifferentiated gland. This study demonstrates that the potential to elaborate tissue-specific medium-chain fatty acids is already expressed in the undifferentiated tissue of virgin rats and is not acquired as a result of the differentiation associated with the lactogenic phase of development. In this species mammary epithelial cells apparently synthesize predominantly medium-chain fatty acids at all stages of development, and only the overall rate of synthesis is increased on induction of the fatty acid synthetase during lactogenesis.  相似文献   

10.
Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates cell proliferation, apoptosis and immune system responses. In the breast, the mammary epithelium is the primary source of TGFB1 and increased expression is associated with increased breast cancer risk. This study was conducted to investigate the roles of epithelial cell-derived TGFB1 in regulation of epithelial cell activity and macrophage phenotype in the mammary gland. Tgfb1 null mutant and wildtype mammary epithelium was transplanted into contra-lateral sides of the cleared mammary gland of TGFB1 replete scid mice. Transplanted tissue was analysed for markers of proliferation and apoptosis to determine the effect of Tgfb1 null mutation on epithelial cell turnover, and was analysed by immunohistochemistry to investigate the location, abundance and phenotype of macrophages. The number of proliferating and dying ductal epithelial cells, determined by BrdU and TUNEL, was increased by 35% and 3.3-fold respectively in mammary gland transplanted with Tgfb1 null epithelium compared to wildtype epithelium (p < 0.05). Abundance of F4/80+ macrophages in between Tgfb1 null epithelial cells compared to wildtype epithelial cells was increased by 50%. The number of iNOS+ and CCR7+ cells in the stroma surrounding Tgfb1 null alveolar epithelium was increased by 78% and 2-fold respectively, and dendriform MHC class II+ cells within ductal epithelium were decreased by 30%. We conclude that epithelial cell-derived TGFB1 in the mammary gland has two functions: (1) regulation of cellular turnover of epithelial cells, and (2) regulation of local macrophage phenotype. These findings shed new light on the diversity of roles of TGFB1 in the mammary gland which are likely to impact on breast cancer risk.  相似文献   

11.
Fibronectin (Fn) plays an important part in the branching morphogenesis of salivary gland, lung, and kidney. Here, we examine the effect of the conditional knockout of Fn in the mammary epithelium [FnMEp−/−] on postnatal mammary gland development, using Cre-loxP-mediated gene knockout technology. Our data show that Fn deletion causes a moderate retardation in outgrowth and branching of the ductal tree in 5-week-old mice. These defects are partially compensated in virgin 16-week-old mice. However, mammary glands consisting of Fn-deficient epithelial cells fail to undergo normal lobuloalveolar differentiation during pregnancy. The severity of lobuloalveolar impairment ranged from lobular hypoplasia to aplasia in some cases and was associated with the amount of Fn protein recovered from these glands. Decreased rates of mammary epithelial cell proliferation accounted for delayed ductal outgrowth in virgin and lack of alveologenesis in pregnant FnMEp−/− mice. Concomitant decreased expression of integrin β1 (Itgb1) and lack of autophosphorylation of focal adhesion kinase (Fak) suggest that this pathology might, at least in part, be mediated by disruption of the Fn/Itgb1/Fak signaling pathway.  相似文献   

12.
Persistence of the capacity for embryogenic morphogenesis in adult mammary epithelium was demonstrated by allowing it to interact with grafted embryonic mesenchyme in vivo. When 14-day embryonic mammary or salivary mesenchyme was transplanted in the mammary gland of syngeneic young adult virgin mice, organogenetic development of the mammary epithelial cells occurred responding to closely attached mesenchyme. An early change, within 2–4 days, that was observed equally in both types of the mesenchymes was proliferation of mammary epithelial cells in multiple layers resembling rudimental architecture. Subsequently, ductal branching occurred from the rudimental architecture by mesenchyme-dependent branching pattern, of mammary gland type with mammary mesenchyme and of salivary gland-like type with salivary mesenchyme. This developmental response did not require hormones secreted from ovaries since it was observed similarly in ovariectomized mice. The mammary epithelium at the lactating stage did not show such a potential to the transplanted salivary mesenchyme.  相似文献   

13.
The avidin-biotin-peroxidase complex immunoperoxidase technique was employed to determine the intercellular distribution of thioesterase II in rat mammary glands. This enzyme is responsible for shifting the product specificity of the fatty-acid synthetase enzyme complex from long to medium chain fatty acids. Thioesterase II was found exclusively in the cells lining the lumen of the ductal and alveolar structures in glands from mature virgin (150 days old) and pregnant rats. The ductal cell staining intensity was considerably less than that of the alveolar cells in the mature virgin rat glands. No immunoreactive thioesterase II was found in the stromal, adipose, vascular, or myoepithelial components of the gland in the developmental stages examined. In the glands from immature virgin rats (40-45 days old) thioesterase II was again found only in the epithelial cells lining the lumen of the ductal and end-bud structures although this layer was usually more than one cell thick. Quantitative determination of thioesterase II activity in cytosol preparations revealed similar levels in mammary fragments from enzymatically-dissociated glands obtained from mature virgins and in end buds derived from immature virgins, but somewhat higher levels in mammary structures derived from late-pregnant animals. These immunohistological and biochemical results demonstrate thioesterase II's usefulness as a mammary epithelial cell-specific marker.  相似文献   

14.
Despite the fact that physiological evidence points to the existence of a functional Na-K-Cl cotransporter in the mammary gland, the molecular identity of this transport process remains unknown. We now show that the Na-K-Cl cotransporter isoform, NKCC1, is expressed in mammary tissue. Developmental profiling revealed that the level of NKCC1 protein was significantly influenced by the stage of mammary gland development, and immunolocalization studies demonstrated that NKCC1 was present on the basolateral membrane of mammary epithelial cells. To examine whether functional NKCC1 is required for mammary epithelial cell development, we used NKCC1 -/- mice. We demonstrate that NKCC1 -/- mammary epithelium exhibited a significant delay in ductal outgrowth and an increase in branching morphogenesis during virgin development. These effects were autonomous to the epithelium as assessed by mammary gland transplantation. Although the absence of NKCC1 had no apparent effect on gross mammary epithelial cell morphology during lactation, pups born to NKCC1 -/- mice failed to thrive. Finally, analysis of NKCC1 protein in mouse models that exhibit defects in mammary gland development demonstrate that high levels of NKCC1 protein are indicative of ductal epithelial cells, and the presence of NKCC1 protein is characteristic of mammary epithelial cell identity.  相似文献   

15.
Mammary gland biologists have long assumed that differentiated secretory epithelial cells undergo programmed cell death at the end of lactation and that the alveolar compartment is reconstituted from undifferentiated precursor cells in subsequent pregnancies. It is generally agreed that the remodeled gland in a parous animal resembles that of a mature virgin at the morphological level. However, several physiological differences have been noted in comparing the responses of mammary epithelia from nulliparous versus parous females to hormonal stimulation and carcinogenic agents. We present genetic evidence that an involuted mammary gland is fundamentally different from a virgin gland, despite its close morphological resemblance. This difference results from the formation of a new mammary epithelial cell population that originates from differentiating cells during pregnancy. In contrast to the majority of fully committed alveolar cells, this epithelial population does not undergo cell death during involution or remodeling after lactation. We show that these cells can function as alveolar progenitors in subsequent pregnancies and that they can play an important role in functional adaptation in genetically engineered mice, which exhibit a reversion of a lactation-deficient phenotype in multiparous animals. In transplantation studies, this parity-induced epithelial population shows the capacity for self-renewal and contributes significantly to the reconstitution of the resulting mammary outgrowth (i.e. ductal morphogenesis and lobulogenesis). We propose that this parity-induced population contributes importantly to the biological differences between the mammary glands of parous and nulliparous females.  相似文献   

16.
Alpha-catenin is a structural molecule and essential to the function of epithelial adherens junctions. Its role in the morphogenesis of mammary epithelium was explored using experimental mouse genetics. Since loss of α-catenin in mice leads to embryonic lethality, the α-catenin gene was flanked by loxP sites and inactivated in mammary epithelium using the WAP-Cre and MMTV-Cre transgenes. Loss of α-catenin arrested alveolar epithelial expansion. These cells lacked proper polarity and markers of functional differentiation, which resulted in impaired milk protein gene expression. Without α-catenin, increased epithelial cell death was observed at parturition and the tissue resembled an involuted gland that is normally observed after weaning. Lastly, no tumors were detected in mammary tissue lacking α-catenin.  相似文献   

17.
18.
19.
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号