首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.  相似文献   

2.
3.
Yu Y  Zhang H  Tian F  Zhang W  Fang H  Song J 《PloS one》2008,3(7):e2672
Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their relationships with chicken neoplastic disease resistance and susceptibility are not yet defined. In the present study, we analyzed the complexity of the DNA methylation variations and DNA mutations in the first exon of three DNMTs genes over generations, tissues, and ages among chickens of two highly inbred White Leghorn lines, Marek's disease-resistant line 6(3) and -susceptible line 7(2), and six recombinant congenic strains (RCSs). Among them, tissue-specific methylation patterns of DNMT3a were disclosed in spleen, liver, and hypothalamus in lines 6(3) and 7(2). The methylation level of DNMT3b on four CpG sites was not significantly different among four tissues of the two lines. However, two line-specific DNA transition mutations, CpG-->TpG (Chr20:10203733 and 10203778), were discovered in line 7(2) compared to the line 6(3) and RCSs. The methylation contents of DNMT1 in blood cell showed significant epimutations in the first CpG site among the two inbred lines and the six RCSs (P<0.05). Age-specific methylation of DNMT1 was detected in comparisons between 15 month-old and 2 month-old chickens in both lines except in spleen samples from line 7(2). No DNA mutations were discovered on the studied regions of DNMT1 and DNMT3a among the two lines and the six RCSs. Moreover, we developed a novel method that can effectively test the significance of DNA methylation patterns consisting of continuous CpG sites. Taken together, these results highlight the potential of epigenetic alterations in DNMT1 and DNMT3a, as well as the DNA mutations in DNMT3b, as epigenetic and genetic factors to neoplastic diseases of chickens.  相似文献   

4.
5.
Cytosine methylation polymorphism plays a key role in gene regulation, mainly in expression of genes in crop plants. The differential expression of cytosine methylation over drought stress response was analyzed in rice using drought susceptible but agronomically superior lines IR 20 and CO 43, and drought tolerant genotypes PL and PMK 3 and their F1 hybrids. The parents and hybrids were subjected to two moisture regimes viz., one under drought condition and another under control condition. The cytosine methylation polymorphism in genomic DNA was quantified under both the conditions at the reproductive stage of the plant using the Methylation Sensitive Amplified Polymorphism (MSAP) technique devised by Xiong et al. (261:439–446, 1999). The results depicted that under drought condition, hyper-methylation was predominant in the drought susceptible genotypes while drought tolerant genotypes presented hypo-methylation behavior. While imposing drought, spikelet sterility per cent was positively correlated to percentage of methylation whereas, panicle length, number of seed per panicle, panicle weight, 100 seed weight, and yield/plant were negatively correlated indicating the role of epigenetic regulation in yield attributing traits in response to drought. Thus, methylation can be considered as an important epigenetic regulatory mechanism in rice plants to adapt drought situation. From this study, we speculate that the hyper- methylation may be an indicator of drought susceptibility and the hypo-methylation for drought tolerance and this methylation polymorphism can be effectively used in drought screening program.  相似文献   

6.
7.
DNA methylation is one of the epigenetic mechanisms regulating gene expression in plants in response to environmental conditions. In this study, analysis of methylation patterns was carried out in order to assess the effect of water stress in two contrasting wheat genotypes using methylation-sensitive amplified polymorphism (MSAP). The results revealed that demethylation was higher in drought-tolerant genotype (C306) as compared to drought-sensitive genotype (HUW468) after experiencing drought stress. Comparisons of different MSAP patterns showed a high percentage of polymorphic bands between tolerant and susceptible wheat genotypes (from 74.79 % at anthesis to 88.89 % at tillering). Furthermore, differential DNA methylation in roots and leaves also revealed tissue-specific methylation of genomic DNA. Interestingly, 54 developmental stage-specific bands and 23 bands that were found contrasting between these two wheat genotypes were detected. Furthermore, a few sites with stable DNA methylation differences were identified between drought-tolerant and drought-sensitive cultivars, thus providing genotype-specific epigenetic markers. These results not only provide data on differences in DNA methylation changes but also contribute to dissection of molecular mechanisms of drought response and tolerance in wheat.  相似文献   

8.
Epigenetic modifications are considered to have an important role in evolution. DNA methylation is one of the best studied epigenetic mechanisms and methylation variability is crucial for promoting phenotypic diversification of organisms in response to environmental variation. A critical first step in the assessment of the potential role of epigenetic variation in evolution is the identification of DNA methylation polymorphisms and their relationship with genetic variations in natural populations. However, empirical data is scant in animals, and particularly so in wild mammals. Bats are considered as bioindicators because of their sensitivity to environmental perturbations and they may present an opportunity to explore epigenetic variance in wild mammalian populations. Our study is the first to explore these questions in the female great roundleaf bat (Hipposideros armiger) populations using the methylation-sensitive amplified polymorphism (MSAP) technique. We obtained 868 MSAP sites using 18 primer combinations and found (1) a low genomic methylation level (21.3?% on average), but extensive DNA methylation polymorphism (90.2?%) at 5'-CCGG-3' sites; (2) epigenetic variation that is structured into distinct between- (29.8?%) and within- (71.2?%) population components, as does genetic variation; and (3) a significant correlation between epigenetic and genetic variations (P?相似文献   

9.
With the goal of studying epigenetic alterations in fibrolamellar hepatocellular carcinoma (FLC) and establish an associated DNA methylation signature, we analyzed LINE-1 methylation in a cohort of FLC and performed next-generation sequencing of DNA methylation in a training set of pure-FLCs and non-cirrhotic hepatocellular carcinomas (nc-HCC). DNA methylation was correlated with gene expression. Furthermore, we established and validated an epigenetic signature differentiating pure-FLC from other HCCs. LINE-1 methylation correlated with shorter recurrence-free survival and overall survival in resected pure-FLC patients. Unsupervised clustering using CG sites located in islands distinguished pure-FLC from nc-HCC. Major DNA methylation changes occurred outside promoters, mainly in gene bodies and intergenic regions located in the vicinity of liver developmental genes (i.e., SMARCA4 and RXRA). Partially methylated domains were more prone to DNA methylation changes. Furthermore, we identified several putative tumor suppressor genes (e.g., DLEU7) and oncogenes (e.g., DUSP4). While ∼70% of identified gene promoters gaining methylation were marked by bivalent histone marks (H3K4me3/H3K27me3) in embryonic stem cells, ∼70% of those losing methylation were marked by H3K4me3. Finally, we established a pure FLC DNA methylation signature and validated it in an independent dataset. Our analysis reveals a distinct epigenetic signature of pure FLC as compared to nc-HCC, with DNA methylation changes occurring in the vicinity of liver developmental genes. These data suggest new options for targeting FLC based on cancer epigenome aberrations.  相似文献   

10.
11.
DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance.DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.  相似文献   

12.
Aberrant promoter methylation and resultant silencing of TRAIL decoy receptors were reported in a variety of cancers, but to date little is known about the relevance of this epigenetic modification in melanoma. In this study, we examined the methylation and the expression status of TRAIL receptor genes in cutaneous and uveal melanoma cell lines and specimens and their interaction with DNA methyltransferases (DNMTs) DNMT1, DNMT3a, and DNMT3b. DR4 and DR5 methylation was not frequent in cutaneous melanoma but on the contrary it was very frequent in uveal melanoma. No correlation between methylation status of DR4 and DR5 and gene expression was found. DcR1 and DcR2 were hypermethylated with very high frequency in both cutaneous and uveal melanoma. The concordance between methylation and loss of gene expression ranged from 91% to 97%. Here we showed that DNMT1 was crucial for DcR2 hypermethylation and that DNMT1 and DNMT3a coregulate the methylation status of DcR1. Our work also revealed the critical relevance of DcR1 and DcR2 expression in cell growth and apoptosis either in cutaneous or uveal melanoma. In conclusion, the results presented here claim for a relevant impact of aberrant methylation of decoy receptors in melanoma and allow to understand how the silencing of DcR1 and DcR2 is related to melanomagenesis.  相似文献   

13.

Background

Adenocarcinomas located near the gastroesophageal junction have unclear etiology and are difficult to classify. We used DNA methylation analysis to identify subtype-specific markers and new subgroups of gastroesophageal adenocarcinomas, and studied their association with epidemiological risk factors and clinical outcomes.

Methodology/Principal Findings

We used logistic regression models and unsupervised hierarchical cluster analysis of 74 DNA methylation markers on 45 tumor samples (44 patients) of esophageal and gastric adenocarcinomas obtained from a population-based case-control study to uncover epigenetic markers and cluster groups of gastroesophageal adenocarcinomas. No distinct epigenetic differences were evident between subtypes of gastric and esophageal cancers. However, we identified two gastroesophageal adenocarcinoma subclusters based on DNA methylation profiles. Group membership was best predicted by GATA5 DNA methylation status. We analyzed the associations between these two epigenetic groups and exposure using logistic regression, and the associations with survival time using Cox regression in a larger set of 317 tumor samples (278 patients). There were more males with esophageal and gastric cardia cancers in Cluster Group 1 characterized by higher GATA5 DNA methylation values (all p<0.05). This group also showed associations of borderline statistical significance with having ever smoked (p-value = 0.07), high body mass index (p-value = 0.06), and symptoms of gastroesophageal reflux (p-value = 0.07). Subjects in cluster Group 1 showed better survival than those in Group 2 after adjusting for tumor differentiation grade, but this was not found to be independent of tumor stage.

Conclusions/Significance

DNA methylation profiling can be used in population-based studies to identify epigenetic subclasses of gastroesophageal adenocarcinomas and class-specific DNA methylation markers that can be linked to epidemiological data and clinical outcome. Two new epigenetic subgroups of gastroesophageal adenocarcinomas were identified that differ to some extent in their survival rates, risk factors of exposure, and GATA5 DNA methylation.  相似文献   

14.
15.
We report here that by using a modified scoring criterion, the methylation-sensitive amplified polymorphism or MSAP marker can be used effectively to detect polymorphism in DNA methylation patterns within and among populations of a perennial wild barley species, Hordeum brevisubulatum. Twenty-four selected individual genotypes representing four natural populations of H. brevisubulatum distributed in the Songnen Prairie in northeastern China were studied. The utility of MSAP was evidenced by its detection of high levels of polymorphism in DNA methylation patterns between individuals within a given population, and the clear inter-population differentiation in methylation patterns (methylation-based epigenetic population structure) revealed among the four populations. The resolving power of MSAP to detect DNA methylation polymorphism was found to be comparable with that of a retrotransposon-based sequence-specific amplified polymorphism marker, or SSAP, to detect genetic polymorphism in the same set of plants, suggesting that MSAP with a modified scoring criterion can be used efficiently to detect DNA methylation polymorphism and assess epigenetic population structure in natural plant populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
ABSTRACT: BACKGROUND: Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. RESULTS: To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. CONCLUSIONS: Our results demonstrate that etoposide imposes a similar genotoxic stress on plant cells as it does on animal and human cells, which may induce transgenerational genomic instability by instigating transpositional activation of otherwise dormant TEs. In addition, we show for the first time that etoposide may induce epigenetic instability in the form of altered DNA methylation patterns in eukaryotes. However, penetration of the genotoxic effects of etoposide on plant cells, as being reflected as genetic and epigenetic instability, appears to be in a strictly genotype- and/or generation-dependent manner.  相似文献   

17.
Despite the importance of assessing the stability of epigenetic variation in non-model organisms living in real-world scenarios, no studies have been conducted on the transgenerational persistence of epigenetic structure in wild plant populations. This gap in knowledge is hindering progress in the interpretation of natural epigenetic variation. By applying the methylation-sensitive amplified fragment length polymorphism (MSAP) technique to paired plant-pollen (i.e., sporophyte-male gametophyte) DNA samples, and then comparing methylation patterns and epigenetic population differentiation in sporophytes and their descendant gametophytes, we investigated transgenerational constancy of epigenetic structure in three populations of the perennial herb Helleborus foetidus (Ranunculaceae). Single-locus and multilocus analyses revealed extensive epigenetic differentiation between sporophyte populations. Locus-by-locus comparisons of methylation status in individual sporophytes and descendant gametophytes showed that ∼75% of epigenetic markers persisted unchanged through gametogenesis. In spite of some epigenetic reorganization taking place during gametogenesis, multilocus epigenetic differentiation between sporophyte populations was preserved in the subsequent gametophyte stage. In addition to illustrating the efficacy of applying the MSAP technique to paired plant-pollen DNA samples to investigate epigenetic gametic inheritance in wild plants, this paper suggests that epigenetic differentiation between adult plant populations of H. foetidus is likely to persist across generations.  相似文献   

18.
The purpose of this study is to investigate (1) the induction of epigenetic effects in the crustacean Daphnia magna using DNA methylation as an epigenetic mark and (2) the potential stable transfer of such an epigenetic effect to non-exposed subsequent generations. Daphnids were exposed to chemical substances known to affect DNA methylation in mammals: vinclozolin, 5-azacytidine, 2′-deoxy-5-azacytidine, genistein and biochanin A. Effects on overall DNA cytosine methylation, body length and reproduction were evaluated in 21 day experiments. Using a multi-generational experimental design these endpoints were also evaluated in the F1 and F2 generation of both exposed and non-exposed offspring from F0 daphnids exposed to 5-azacytidine, genistein or vinclozolin. A reduction in DNA methylation was consistently observed in daphnids exposed to vinclozolin and 5-azacytidine. Only in organisms exposed to 5-azacytidine was this effect transferred to the two subsequent non-exposed generations. A concurrent reduction in body length at day 7 was observed in these treatments. For the first time, exposure to environmental chemicals was shown to affect DNA methylation in the parental generation of D. magna. We also demonstrated a transgenerational alteration in an epigenetic system in D. magna, which indicates the possibility of transgenerational inheritance of environment-induced epigenetic changes in non-exposed subsequent generations.  相似文献   

19.
20.
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号