首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viperin, an evolutionarily highly conserved interferon-inducible multifunctional protein, has previously been reported to exhibit antiviral activity against a wide range of DNA and RNA viruses. Utilizing the complete nucleotide coding sequence data of fish viperin antiviral genes, and employing the maximum likelihood-based codon substitution models, the present study reports the pervasive role of positive selection in the evolution of viperin antiviral protein in fishes. The overall rate of nonsynonymous (dN) to synonymous (dS) substitutions (dN/dS) for the three functional domains of viperin (N-terminal, central domain and C-terminal) were 1.1, 0.12, and 0.24, respectively. Codon-by-codon substitution analyses have revealed that while most of the positively selected sites were located at the N-terminal amphipathic α-helix domain, few amino acid residues at the C-terminal domain were under positive selection. However, none of the sites in the central domain were under positive selection. These results indicate that, although viperin is evolutionarily highly conserved, the three functional domains experienced differential selection pressures. Taken together with the results of previous studies, the present study suggests that the persistent antagonistic nature of surrounding infectious viral pathogens might be the likely cause for such adaptive evolutionary changes of certain amino acids in fish viperin antiviral protein.  相似文献   

2.
Gene duplication is a key mechanism for the adaptive evolution and neofunctionalization of gene families. Large multigene families often exhibit complex evolutionary histories as a result of frequent gene duplication acting in concordance with positive selection pressures. Alterations in the domain structure of genes, causing changes in the molecular scaffold of proteins, can also result in a complex evolutionary history and has been observed in functionally diverse multigene toxin families. Here, we investigate the role alterations in domain structure have on the tempo of evolution and neofunctionalization of multigene families using the snake venom metalloproteinases (SVMPs) as a model system. Our results reveal that the evolutionary history of viperid (Serpentes: Viperidae) SVMPs is repeatedly punctuated by domain loss, with the single loss of the cysteine-rich domain, facilitating the formation of P-II class SVMPs, occurring prior to the convergent loss of the disintegrin domain to form multiple P-I SVMP structures. Notably, the majority of phylogenetic branches where domain loss was inferred to have occurred exhibited highly significant evidence of positive selection in surface-exposed amino acid residues, resulting in the neofunctionalization of P-II and P-I SVMP classes. These results provide a valuable insight into the mechanisms by which complex gene families evolve and detail how the loss of domain structures can catalyze the accelerated evolution of novel gene paralogues. The ensuing generation of differing molecular scaffolds encoded by the same multigene family facilitates gene neofunctionalization while presenting an evolutionary advantage through the retention of multiple genes capable of encoding functionally distinct proteins.  相似文献   

3.
Stimulated by retinoic acid 6 (STRA6) is the receptor for retinol binding protein and is relevant for the transport of retinol to specific sites such as the eye. The adaptive evolution mechanism that vertebrates have occupied nearly every habitat available on earth and adopted various lifestyles associated with different light conditions and visual challenges, as well as their role in development and adaptation is thus far unknown. In this work, we have investigated different aspects of vertebrate STRA6 evolution and used molecular evolutionary analyses to detect evidence of vertebrate adaptation to the lightless habitat. Free-ratio model revealed significant rate shifts immediately after the species divergence. The amino acid sites detected to be under positive selection are within the extracellular loops of STRA6 protein. Branch-site model A test revealed that STRA6 has undergone positive selection in the different phyla of mammalian except for the branch of rodent. The results suggest that interactions between different light environments and host may be driving adaptive change in STRA6 by competition between species. In support of this, we found that altered functional constraints may take place at some amino acid residues after speciation. We suggest that STRA6 has undergone adaptive evolution in different branch of vertebrate relation to habitat environment.  相似文献   

4.
干扰素诱导的鱼类Mx蛋白   总被引:2,自引:0,他引:2  
Mx蛋白是干扰素诱导表达的蛋白家族中的成员,当机体和细胞受病毒感染或诱生剂处理时产生。Mx蛋白和其它干扰素诱导蛋白一起构成宿主细胞的抗病毒状态,以达到抗病毒的目的。研究表明,Mx蛋白具有抗病毒活性,还可能与其它基本生命活动如发育或分化,蛋白质分送和生长有关。在鱼类也发现多种Mx蛋白,具有Mx蛋白家族的共有特征;在肽链末端有一个三联ATP/GTP结合区和发动蛋白家族的结构特征序列;在蛋白C端存在使Mx蛋白形成三聚体的Leu拉链结构以及定位信号。但是迄今没有发现鱼类Mx蛋白的抗病毒活性。文章最后对目前鱼类病毒病的防治及利用抗病毒基因进行鱼类基因工程抗病毒育种进行了探讨。  相似文献   

5.
Quantifying adaptive evolution at the genomic scale is an essential yet challenging aspect of evolutionary biology. Here, we develop a method that extends and generalizes previous approaches to estimate the rate of genomic adaptation in rapidly evolving populations and apply it to a large data set of complete human influenza A virus genome sequences. In accord with previous studies, we observe particularly high rates of adaptive evolution in domain 1 of the viral hemagglutinin (HA1). However, our novel approach also reveals previously unseen adaptation in other viral genes. Notably, we find that the rate of adaptation (per codon per year) is higher in surface residues of the viral neuraminidase than in HA1, indicating strong antibody-mediated selection on the former. We also observed high rates of adaptive evolution in several nonstructural proteins, which may relate to viral evasion of T-cell and innate immune responses. Furthermore, our analysis provides strong quantitative support for the hypothesis that human H1N1 influenza experiences weaker antigenic selection than H3N2. As well as shedding new light on the dynamics and determinants of positive Darwinian selection in influenza viruses, the approach introduced here is applicable to other pathogens for which densely sampled genome sequences are available, and hence is ideally suited to the interpretation of next-generation genome sequencing data.  相似文献   

6.
The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) interacts with receptors on the target cell and mediates virus entry by fusing the viral and cell membranes. To maintain the viral infectivity, amino acids that interact with receptors are expected to be more conserved than the other sites on the protein surface. In contrast to the functional constraint of amino acids for the receptor binding, some amino acid changes in this protein may produce antigenic variations that enable the virus to escape from recognition of the host immune system. Therefore, both positive selection (higher fitness) and negative selection (lower fitness) against amino acid changes are taking place during evolution of surface proteins of parasites To elucidate the evolutionary mechanisms of the whole HIV-1 gp120 envelope glycoprotein at the single site level, we collected and analyzed all available sequence data for the protein. By analyzing 186 sequences of the HIV-1 gp120 (subtype B), we reevaluated amino acid variability at the single site level, and estimated the numbers of synonymous and nonsynonymous substitutions at each codon position to detect positive and negative selection. We identified 33 amino acid positions which may be under positive selection. Some of these positions may form discontinuous epitopes. We also analyzed amino acid sequences to find amino acid positions responsible for usage of the second receptor. We found that, in addition to the V3 loop, amino acid variation at residue 440 in C4 region is clearly linked with the usage of CXCR 4.  相似文献   

7.
The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8+ T-cell responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with detectable CD8+ T-cell responses, indicative of positive selective immune pressures. An additional 18% of amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8+ T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.  相似文献   

8.
Retroviral integrase plays an important role in choosing host chromosomal sites for integration of the cDNA copy of the viral genome. The domain responsible for target site selection has been previously mapped to the central core of the protein (amino acid residues 49-238). Chimeric integrases between human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) were prepared to examine the involvement of a nonspecific DNA-binding region (residues 213-266) and certain alpha helices within the core domain in target site selection. Determination of the distribution and frequency of integration events of the chimeric integrases narrowed the target site-specifying motif to within residues 49-187 and showed that alpha 3 and alpha 4 helices (residues 123-166) were not involved in target site selection. Furthermore, the chimera with the alpha 2 helix (residues 118-121) of FIV identity displayed characteristic integration events from both HIV-1 and FIV integrases. The results indicate that the alpha 2 helix plays a role in target site preference as either part of a larger or multiple target site-specifying motif.  相似文献   

9.
10.
In the present study we report on evolution of calicivirus RNA from a patient with chronic diarrhea (i.e., lasting >2 years) and viral shedding. Partial sequencing of open reading frame 1 (ORF1) from 12 consecutive isolates revealed shedding of a genogroup II virus with relatively few nucleotide changes during a 1-year period. The entire capsid gene (ORF2) was also sequenced from the same isolates and found to contain 1,647 nucleotides encoding a protein of 548 amino acids with similarities to the Arg320 and Mx strains. Comparative sequence analysis of ORF2 revealed 32 amino acid changes during the year. It was notable that the vast majority of the cumulative amino acid changes (8 of 11) appeared within residues 279 to 405 located within the hypervariable domain (P2) of the capsid protein and hence were subject to immune pressure. An interesting and novel observation was that the accumulated amino acid changes in the P2 domain resulted in predicted structural changes, including disappearance of a helix structure, and thus a possible emergence of a new phenotype. FUT2 gene polymorphism characterization revealed that the patient is heterozygous at nucleotide 428 and thus Secretor(+), a finding in accordance with the hypothesis of FUT2 gene polymorphism and calicivirus susceptibility. To our knowledge, this is the first report of RNA evolution of calicivirus in a single individual, and our data suggest an immunity-driven mechanism for viral evolution. We also report on chronic virus excretion, immunoglobulin treatment, and modification of clinical symptoms; our observations from these studies, together with the FUT2 gene characterization, may lead to a better understanding of calicivirus pathogenesis.  相似文献   

11.
Pathogen infection triggers host innate defenses which may result in the activation of regulated cell death (RCD) pathways such as apoptosis. Given a vital role in immunity, apoptotic effectors are often counteracted by pathogen-encoded antagonists. Mounting evidence indicates that programmed necrosis, which is mediated by the RIPK3/MLKL axis and termed necroptosis, evolved as a countermeasure to pathogen-mediated inhibition of apoptosis. Yet, it is unclear whether components of this emerging RCD pathway display signatures associated with pathogen conflict that are rare in combination but common to key host defense factors, namely, rapid evolution, viral homolog (virolog), and cytokine induction. We leveraged evolutionary sequence analysis that examines rates of amino acid replacement, which revealed: 1) strong and recurrent signatures of positive selection for primate and bat RIPK3 and MLKL, and 2) elevated rates of amino acid substitution on multiple RIPK3/MLKL surfaces suggestive of past antagonism with multiple, distinct pathogen-encoded inhibitors. Furthermore, our phylogenomics analysis across poxvirus genomes illuminated volatile patterns of evolution for a recently described MLKL viral homolog. Specifically, poxviral MLKLs have undergone numerous gene replacements mediated by duplication and deletion events. In addition, MLKL protein expression is stimulated by interferons in human and mouse cells. Thus, MLKL displays all three hallmarks of pivotal immune factors of which only a handful of factors like OAS1 exhibit. These data support the hypothesis that over evolutionary time MLKL functions—which may include execution of necroptosis—have served as a major determinant of infection outcomes despite gene loss in some host genomes.  相似文献   

12.
Aoki N  Matsuo H  Deshimaru M  Terada S 《Gene》2008,426(1-2):7-14
Five small serum proteins (SSPs) with molecular masses of 6.5-10 kDa were detected in Habu (Trimeresurus flavoviridis) serum; this included two novel proteins SSP-4 and SSP-5. The amino acid sequences of these proteins and of SSP-1, SSP-2, and SSP-3, which were reported previously, were determined on the basis of the nucleotide sequences of their cDNAs. Although these proteins exhibited only limited sequence identity to mammalian prostatic secretory protein of 94 amino acids (PSP94), the topological pattern of disulfide bonds in SSPs was identical to that of the mammalian proteins. SSP-3 and SSP-4 lacked approximately 30 residues at the C-terminal. Each of the full-length cDNAs encoded a mature protein of 62-90 residues and a highly conserved signal peptide. The evolutionary distances between SSPs estimated on the basis of the amino acid changes were significantly greater than those of the synonymous nucleotide substitutions; these finding, together with results from analyses of nonsynonymous to synonymous rates of change (dN/dS) suggest that snake SSPs have endured substantial accelerated adaptive protein evolution. Such accelerated positive selection in SSPs parallels other findings of similar molecular evolution in snake venom proteins and suggests that diversifying selection on both systems may be linked, and that snake SSP genes may have evolved by gene duplication and rapid diversification to facilitate the acquisition of various functions to block venom activity within venomous snakes.  相似文献   

13.
Abinash Padhi 《Genetica》2012,140(4-6):197-203
Antimicrobial peptides (AMPs) are present in a wide range of taxonomic groups and played a crucial role in host adaptation to a diverse array of ever-changing pathogens. Crustin, a cysteine-rich cationic AMP, is known to exhibit antimicrobial activity against Gram-positive and Gram-negative bacteria in decapods. Given their important role in host-immune defense, a large proportion of amino acid substitutions in crustin AMPs are expected to be fixed by natural selection. Utilizing the complete coding nucleotide sequence data of crustin, the present study revealed the pervasive role of positive Darwinian selection in the evolution and divergence of crustin AMPs in decapods. Approximately, 20–35?% of codons in two phylogenetically distinct groups of closely related crustins in Penaeid shrimps are shown to have evolved under positive selection. Interestingly, several of these positively selected sites are located at the carboxyl-terminal region, the region that directly interacts with the invading pathogens. Pathogen-mediated selection pressure could be the likely cause for such an accelerated rate of amino acid substitutions and could have contributed to the structural and functional diversification of crustin AMPs in several taxa.  相似文献   

14.
Merritt TJ  Quattro JM 《Genetics》2001,159(2):689-697
A striking correlation between neural expression and high net negative charge in some teleost isozymes led to the interesting, yet untested, suggestion that negative charge represents an adaptation (via natural selection) to the neural environment. We examine the evolution of the triosephosphate isomerase (TPI) gene family in fishes for periods of positive selection. Teleost fish express two TPI proteins, including a generally expressed, neutrally charged isozyme and a neurally expressed, negatively charged isozyme; more primitive fish express only a single, generally expressed TPI isozyme. The TPI gene phylogeny constructed from sequences isolated from two teleosts, a single acipenseriform, and other TPI sequences from the databases, supports a single gene duplication event early in the evolution of bony fishes. Comparisons between inferred ancestral TPI sequences indicate that the neural TPI isozyme evolved through a period of positive selection resulting in the biased accumulation of negatively charged amino acids. Further, the number of nucleotide changes required for the observed amino acid substitutions suggests that selection acted on the overall charge of the protein and not on specific key amino acids.  相似文献   

15.
Recent studies across animal phyla have suggested a possible link between amino acid compositional shifts and adaptive evolution across mitochondrial proteomes enabling longer lifespans. These studies examined associations of a gradual loss of cysteine (Cys) residues, increased usage of methionine (Met), and increased usage of threonine (Thr), with the evolution of longevity. Here, we examine all three hypotheses in a framework that considers nucleotide composition. We find that nucleotide composition is strongly correlated across codon positions, and with the above amino acid frequency patterns. We also find that the ND6 gene, which in vertebrates is the only mitochondrial gene situated on the “light-strand” shows no significant pattern for any of the amino acid associations. We also reasoned that if the mitochondrially-encoded proteins of oxidative phosphorylation (OXPHOS) were under selection for such shifts, then nuclear-encoded components should also reflect such pressure. However, we found non-correspondence of these patterns in the nuclear genes when compared to the mitochondrial genes previously associated with positive selection. These results are strongly suggestive of mutational bias, or less efficient purifying selection, as the primary driver of whole proteome shifts in amino acid composition.  相似文献   

16.
Our knowledge on the mode of evolution of the multifunctional viral proteins remains incomplete. To tackle this problem, here, we have investigated the evolutionary dynamics of the potyvirus multifunctional protein HC-Pro, with particular focus on its functional domains. The protein was partitioned into the three previously described functional domains, and each domain was analyzed separately and assembled. We searched for signatures of adaptive evolution and evolutionary dependencies of amino acid sites within and between the three domains using the entire set of available potyvirus sequences in GenBank. Interestingly, we identified strongly significant patterns of co-occurrence of adaptive events along the phylogenetic tree in the three domains. These patterns suggest that Domain I, whose main function is to mediate aphid transmission, has likely been coevolving with the other two domains, which are involved in different functions but all requiring the capacity to bind RNA. By contrast, episodes of positive selection on Domains II and III did not correlate, reflecting a trade-off between their evolvability and their evolutionary dependency likely resulting from their functional overlap. Covariation analyses have identified several groups of amino acids with evidence of concerted variation within each domain, but interdomain significant covariations were only found for Domains II and III, further reflecting their functional overlapping.  相似文献   

17.
Llopart A  Comeron JM 《Genetics》2008,179(2):1009-1020
Our understanding of the role of positive selection in the evolution of genes with male-biased expression can be hindered by two observations. First, male-biased genes tend to be overrepresented among lineage-specific genes. Second, novel genes are prone to experience bursts of adaptive evolution shortly after their formation. A thorough study of the forces acting on male-biased genes therefore would benefit from phylogenywide analyses that could distinguish evolutionary trends associated with gene formation and later events, while at the same time tackling the interesting question of whether adaptive evolution is indeed idiosyncratic. Here we investigate the roughex (rux) gene, a dose-dependent regulator of Drosophila spermatogenesis with a C-terminal domain responsible for nuclear localization that shows a distinct amino acid sequence in the melanogaster subgroup. We collected polymorphism and divergence data in eight populations of six Drosophila species, for a total of 99 rux sequences, to study rates and patterns of evolution at this male-biased gene. Our results from two phylogeny-based methods (PAML and HyPhy) as well as from population genetics analyses (McDonald-Kreitman-based tests) indicate that amino acid replacements have contributed disproportionately to divergence, consistent with adaptive evolution at the Rux protein. Analyses based on extant variation show also the signature of recent selective sweeps in several of the populations surveyed. Most important, we detect the significant and consistent signature of positive selection in several independent Drosophila lineages, which evidences recurrent and concurrent events of adaptive evolution after rux formation.  相似文献   

18.
Accessory gland proteins (Acps) are part of the seminal fluid of Drosophila species. These proteins have important reproductive functions, being responsible for the proper functioning of several steps of the fertilization process. Acps also contribute indirectly for the reproductive success of males by modulating female behavior. Evidence that Acps participate in sperm competition and sexual conflict includes findings that, on average, Acps have fast evolutionary rates, suggestive of adaptive evolution. This is especially true in species of the Drosophila repleta group. Nevertheless, only in a few occasions have robust statistical tests been used to determine whether observed evolutionary rates are in fact due to positive selection on amino acid substitutions between related species. Here we apply maximum likelihood tests for positive selection on 14 Acps of the D. repleta group. To increase statistical robustness, we use at least 8 sequences, all belonging to species of the Drosophila mulleri complex, for each gene analyzed. We found significant evidence of adaptive evolution for 10 of the tested genes. Among these, the ones with a conserved protein domain had positively selected sites within the functional region of the sequence. We also detected one instance of lineage-specific adaptive evolution in a clade formed by 2 sister species.  相似文献   

19.
Chronic hepatitis C virus (HCV) infection is a major cause of liver disease. The HCV polyprotein contains a hypervariable region (HVR1) located at the N terminus of the second envelope glycoprotein E2. The strong variability of this 27-amino-acid region is due to its apparent tolerance of amino acid substitutions together with strong selection pressures exerted by anti-HCV immune responses. No specific function has so far been attributed to HVR1. However, its presence at the surface of the viral particle suggests that it might be involved in viral entry. This would imply that HVR1 is not randomly variable. We sequenced 460 HVR1 clones isolated at various times from six HCV-infected patients receiving alpha interferon therapy (which exerts strong pressure towards quasispecies genetic evolution) and analyzed their amino acid sequences together with those of 1,382 nonredundant HVR1 sequences collected from the EMBL database. We found that (i) despite strong amino acid sequence variability related to strong pressures towards change, the chemicophysical properties and conformation of HVR1 were highly conserved, and (ii) HVR1 is a globally basic stretch, with the basic residues located at specific sequence positions. This conservation of positively charged residues indicates that HVR1 is involved in interactions with negatively charged molecules such as lipids, proteins, or glycosaminoglycans (GAGs). As with many other viruses, possible interaction with GAGs probably plays a role in host cell recognition and attachment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号