首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The activity of enzymes of the tricarboxylic acid (TAC) and glyoxylate (GC) cycles in Candida parapsilosis (wild type KSh 21 and mutant 337) were studied under different physiological and metabolic conditions. C. parapsilosis differed in most of its enzyme activities from other non-citric acid producing yeasts. Furthermore, pH-value, temperature and age of culture proved to act differently on both strains of the tested organism.The addition of trans-aconitate increased not only the growth but also the activities of citrate synthase and some other enzymes while that of aconitase decreased enormously.The high citrate synthase activity might be connected with the role of citrate in the transport of acetyl groups.Abbreviations CS citrate synthase - AC aconitase - ICDH isocitrate dehydrogenase - GDH glutamate dehydrogenase - Fum fumarase - MDH malate dehydrogenase - ICL isocitrate lyase - MS malate synthase  相似文献   

2.
Changes in the activity of some enzymes of the tricarboxylic acid cycle during development of sea urchins were investigated. Unfertilized eggs showed substantial activity of citrate synthase, aconitase, NAD- and NADP-specific isocitrate dehydrogenases, fumarase and malate dehydrogenase. During development, the activity of citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase and malate dehydrogenase increases gradually, whereas the activity of fumarase remains rather constant. There is no close correlation between changes in the enzyme activity and the increase in oxygen consumption during development. Citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase are mainly localized in the mitochondrial fraction, whereas fumarase and malate dehydrogenase are present in both mitochondrial and cytosol fractions. The intracellular localization of these enzymes does not change during development. A possible mechanism for the regulation of some enzymes of the tricarboxylic acid cycle in sea urchin eggs is discussed.  相似文献   

3.
The specific activities of the enzymes of the tricarboxylic acid cycle; citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were determined in early fifth-stage, young and mature adult Obeliscoides cuniculi, the rabbit stomach worm. ∝-Ketoglutarate dehydrogenase activity could not be determined in any fraction. Fumarate reductase activity was found only in the mitochondrial fraction while all other enzymes, including an NADP-dependent malic enzyme were localized in the cytoplasm. Glutamate dehydrogenase, acid and alkaline phosphatase activities were also recorded. High levels of those enzymes acting in the “reversed” direction, i.e. MDH and fumarase relative to the enzymes of the “forward” direction, i.e. citrate synthase, aconitase and isocitrate dehydrogenase suggests that under anaerobic conditions a modified tricarboxylic acid cycle can operate. Some variations in specific activities were apparent as the worms matured but no qualitative differences were observed.  相似文献   

4.
The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes.  相似文献   

5.
The thermostability of four enzymes of the tricarboxylic acid cycle has been studied in the facultative thermophile,Bacillus coagulans. Although isocitrate dehydrogenase appeared to be more temperature-sensitive in whole-cell extracts of cultures grown at 30°C compared with that in cultures grown at 55°C, this difference could be largely eliminated by the removal of cell-wall material. The specific activity of each of the enzymes examined was approximately threefold higher in cultures grown at 55°C than in those grown at 30°C. The maximum temperature, Arrhenius plot and effect of stabilizing agents for each enzyme were examined and found to be independent of growth temperature. Sodium chloride (10% w/v) was an effective protective agent for fumarase, aconitase and malate dehydrogenase. Protection from thermal denaturation of isocitrate dehydrogenase, aconitase and fumarase but not malate dehydrogenase was also given when the enzymes were heated in the presence of their substrates. These results are discussed in light of the generalized theories of facultative thermophily which have been proposed.  相似文献   

6.
A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

7.
A comparative study of the enzymes of tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing -ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

8.
Studies on the tricarboxylic acid cycle (TCA cycle) enzymes of Penetrocephalus ganapatii reveal that the TCA cycle is only partially operative, as some of the enzymes at the start of the cycle viz. citrate synthase, aconitase and isocitrate dehydrogenase are found to be low in their activities. The high activities of malate dehydrogenase and fumarase, showing affinity towards a reverse direction, indicate that the TCA cycle operates in the reverse direction resulting in the formation of fumarate. The low succinate dehydrogenase/fumarate reductase ratio suggests that ATP generation may occur at site I of the respiratory chain during the reduction of fumarate into succinate.  相似文献   

9.
The photosynthetic nonsulfur purple bacterium Rhodopseudomonas capsulata strain E1F1 assimilated nitrate or nitrite only in illuminated cultures under anaerobic conditions. The bacterial cells grew aerobically in the dark only when ammonia or other forms of reduced nitrogen were present in the medium. However, nitrate reductase was detected either in light-anaerobic or in dark-aerobic conditions upon addition of nitrate to the media. Changes from light-anaerobic to dark-aerobic conditions and vice versa markedly influenced growth, nitrate uptake and the nitrate reductase levels. Growth on nitrate in the light and nitrate reductase activity were dependent on the presence of molybdenum in the medium whereas the addition of tungstate inhibited both growth and enzyme activity.  相似文献   

10.
L Boquist  I Ericsson 《FEBS letters》1984,178(2):245-248
Considerable variations were found in the in vitro effect of alloxan on mouse liver enzymes associated with the citric acid cycle. The following approximative alloxan concentrations induced 50% inhibition of enzyme activity: 10(-6)M for aconitase, 10(-4)M for NAD-linked isocitrate dehydrogenase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase and fumarase, and 10(-3)M for citrate synthase and NADP-linked isocitrate dehydrogenase. Pyruvate dehydrogenase, succinate dehydrogenase and malate dehydrogenase were not inhibited by 10(-3)M alloxan. The inhibition of aconitase was competitive both when using mouse liver and purified porcine heart enzyme. The Ki values for the purified enzyme in the presence of 5 microM alloxan were 0.22 microM with citrate, 4.0 microM with cis-aconitate and 0.62 microM with isocitrate as substrate. The high sensitivity of aconitase for inhibition by alloxan probably plays a prominent role for the toxic effects of alloxan.  相似文献   

11.
The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given.  相似文献   

12.
Rhodobacter capsulatus strains E1F1 and B10 and Rhodobacter sphaeroides DSM 158 did not use hydroxylamine as nitrogen source for growth but metabolized it mainly through the glutamine synthetase reaction. Hydroxylamine had a high toxicity for cells growing either under phototrophic or dark-aerobic conditions. l-methionine-d,l-sulfoximine partially inhibited hydroxylamine uptake and increased the inhibition time of nitrogenase activity by this nitrogen compound. Nitric oxide was also a powerful inhibitor of nitrogenase in intact cells of R. capsulatus. Since low amounts of NO were produced from hydroxylamine, short-term inhibition of nitrogenase in the presence of this compound could be mediated in vivo by nitric oxide.Abbreviations GS glutamine synthetase - MSX l-methionine-d,l-sulfoximine - MTA mixed alkyltrimethylammonium bromide  相似文献   

13.
Abstract The photosynthetic non-sulfur purple bacterium Rhodobacter capsulatus E1F1 can grow on acetate or dl -malate photoheterotrophically under anerobic conditions or chemoheterotrophically in the dark in the presence of dioxygen. Bacterial cells grown under both anaerobic and aerobic conditions exhibited high amounts of the tricarboxylic acid cycle enzymes especially in dark-aerobic cultures. A high activity of isocitrate lyase was found in cells of R. capsulatus E1F1 and, to a lesser extent, in those of R. capsulatus IP2, Rhodobacter sphaeroides and Rhodospirillum rubrum grown photoheterotrophically on acetate under anaerobic conditions. The second enzyme of the glyoxylate shunt, malate synthase, appears to be constitutive. Itaconate, a powerful inhibitor of isocitrate lyase, severely inhibited growth of R. capsulatus, R. rubrum and R. sphaeroides on acetate, thus corroborating a physiological role of the enzyme in acetate metabolism by Rhodospirillaceae.  相似文献   

14.
The activities of the eight citric acid-cycle enzymes of rat bone-marrow cells were determined along with several other mitochondrial and non-mitochondrial enzymes. Four of the citric acid-cycle enzymes (aconitase, succinyl-CoA thiokinase, α-oxoglutarate dehydrogenase and succinate dehydrogenase) have closely similar low activities; two [isocitrate dehydrogenase (NAD) and citrate synthase] have intermediate activities; the remaining two (malate dehydrogenase and fumarase) have high activities. The other enzymes surveyed also exhibited a spread of three orders of magnitude, the mitochondrial enzymes showing no less variation than the others.  相似文献   

15.
Enzymes of general metabolism have been determined in the latex of Papaver somniferum in an attempt to elucidate further the nature of the 1000 g130 min organelles and their role in alkaloid biogenesis. A number of enzymes involved in the glyoxylic acid and tricarboxylic acid cycles have been found, namely, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and isocitrate lyase. Two enzymes of glycolysis, namely, pyruvate kinase and lactate dehydrogenase, as well as enzymes associated with peroxisomes (glyoxylate reductase, catalase) and lysosomes (arylesterase, acid phosphatase) have been studied. Finally, some enzymes previously reported as occurring in poppy seedlings have been investigated, namely peroxidase, glutamate—oxaloacetate and glutamate-pyruvate transaminases, together with phenylalanine, tyrosine, DOPA and glutamic acid decarboxylases.  相似文献   

16.
Setaria digitata, a filarial parasite of cattle possesses certain unique characteristics like cyanide insensitivity, and lack of cytochromes. In the present study, we have shown that the parasite has an incomplete tricarboxylic acid cycle with the absence of activities of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthase. However the parasite showed the existence of glyoxylate cycle and phosphoenolpyruvate-succinate pathway. The widely used antifilarial drug diethylcarbamazine caused general inhibition of all enzymes of phosphoenolpyruvate-succinate pathway and glyoxylate cycle except that of fumarase and isocitrate lyase. The results may pave the way for new targets for chemotherapy in the control of filarial parasites.  相似文献   

17.
Selective Inhibition of Bacterial Enzymes by Free Fatty Acids   总被引:4,自引:2,他引:2       下载免费PDF全文
Octanoic acid inhibits, in vitro, the bacterial enzymes glucose-6-phosphate dehydrogenase, phosphofructokinase, pyruvate kinase, fumarase, lactate dehydrogenase, and the malic enzyme of Arthrobacter crystallopoietes. The free fatty acid appears to act as an inhibitor of lipogenesis, although it does not affect the rate of gluconeogenesis. To demonstrate that this inhibition may be of physiological significance in vivo, those enzymes not involved in lipogenesis, such as fructose-1, 6-diphosphatase, phosphoglucomutase, phosphohexoisomerase, aconitase, nicotinamide adenine dinucleotide phosphate (NADP) isocitrate dehydrogenase, NADP glutamate dehydrogenase, malate dehydrogenase, and isocitrate lyase, were assayed and found not to be inhibited by the free fatty acid.  相似文献   

18.
During the growth of turnip seedlings, two new lipases have been demonstrated, one with a maximum activity at pH 4.5 (acid lipase) and the other with a maxima at pH 8.6 (alkaline lipase). Many different enzymes are involved in gluconeogenesis: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase, aconitase, citrate synthetase, fumarase, glycolate oxidase, phosphoenol-pyruvate carboxykinase. All of these show maximum activity coinciding with the stage in which lipid hydrolysis is maximal and when the accumulation of soluble carbohydrates has also reached its peak. The alkaline lipase as found to be located mainly in the spherosomes, whereas the glyoxysomes contained the following main activities: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase and citrate synthetase. Aconitase, together with cytochrome oxidase and fumarase showed their highest activity in the mitochondria, and the presence of malate dehydrogenase, citrate synthetase and glycolate oxidase was also observed in these organelles. In the membrane-bound fraction, the activities of cytochrome reductase, glycolate oxidase and phosphoenol-pyruvate kinase were marked, although the latter enzyme was even more active in the soluble fraction.  相似文献   

19.
InRhodobacter capsulatus E1F1, isocitrate lyase (ICL) (EC 4.5.3.1) is a regulatory enzyme whose levels are increased in the presence of acetate as the sole carbon source. Acetate activated isocitrate lyase in a process dependent on energy supply and de novo protein synthesis. In contrast to isocitrate lyase, isocitrate dehydrogenase (ICDH) activity was independent of the carbon source used for growth and significantly increased in darkened cells. Pyruvate or yeast extract prevented in vivo activation of isocitrate lyase in cells growing on acetate. The enzyme was reversibly inactivated to a great extent in vitro by pyruvate and other oxoacids presumably involved in acetate metabolism. These results suggest that, inR. capsulatus E1F1, isocitrate lyase is regulated by both enzyme synthesis and oxoacid inactivation.  相似文献   

20.
Carbon starvation conditions were found to increase the activities of gluconeogenic enzymes such as malic enzyme, cytosolic malate dehydrogenase and isocitrate lyase along with proteases and inhibition in glucose catabolic enzymes such as G6P dehydrogenase and FDP aldolase inNeurospora crassa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号