首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Qin S  He Y  Pan XM 《Proteins》2005,61(3):473-480
We have improved the multiple linear regression (MLR) algorithm for protein secondary structure prediction by combining it with the evolutionary information provided by multiple sequence alignment of PSI-BLAST. On the CB513 dataset, the three states average overall per-residue accuracy, Q(3), reached 76.4%, while segment overlap accuracy, SOV99, reached 73.2%, using a rigorous jackknife procedure and the strictest reduction of eight states DSSP definition to three states. This represents an improvement of approximately 5% on overall per-residue accuracy compared with previous work. The relative solvent accessibility prediction also benefited from this combination of methods. The system achieved 77.7% average jackknifed accuracy for two states prediction based on a 25% relative solvent accessibility mode, with a Mathews' correlation coefficient of 0.548. The improved MLR secondary structure and relative solvent accessibility prediction server is available at http://spg.biosci.tsinghua.edu.cn/.  相似文献   

2.
Protein eight-state secondary structure prediction is challenging, but is necessary to determine protein structure and function. Here, we report the development of a novel approach, SPSSM8, to predict eight-state secondary structures of proteins accurately from sequences based on the structural position-specific scoring matrix (SPSSM). The SPSSM has been successfully utilized to predict three-state secondary structures. Now we employ an eight-state SPSSM as a feature that is obtained from sequence structure alignment against a large database of 9 million sequences with putative structural information. The SPSSM8 uses a low sequence identity dataset (9062 entries) as a training set and conditional random field for the classification algorithm. The SPSSM8 achieved an average eight-state secondary structure accuracy (Q8) of 71.7% (Q3, 81.6%) for an independent testing set (463 entries), which had an improved accuracy of 10.1% and 4.6% compared with SSPro8 and CNF, respectively, and significantly improved the accuracy of eight-state secondary structure prediction. For CASP 9 dataset (92 entries) the SPSSM8 achieved a Q8 accuracy of 80.1% (Q3, 83.0%). The SPSSM8 was confirmed as an outstanding predictor for eight-state secondary structures of proteins. SPSSM8 is freely available at http://cal.tongji.edu.cn/SPSSM8.  相似文献   

3.
A neural network-based method has been developed for the prediction of beta-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Q(pred), Q(obs), and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published beta-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach.  相似文献   

4.
Adamczak R  Porollo A  Meller J 《Proteins》2005,59(3):467-475
Owing to the use of evolutionary information and advanced machine learning protocols, secondary structures of amino acid residues in proteins can be predicted from the primary sequence with more than 75% per-residue accuracy for the 3-state (i.e., helix, beta-strand, and coil) classification problem. In this work we investigate whether further progress may be achieved by incorporating the relative solvent accessibility (RSA) of an amino acid residue as a fingerprint of the overall topology of the protein. Toward that goal, we developed a novel method for secondary structure prediction that uses predicted RSA in addition to attributes derived from evolutionary profiles. Our general approach follows the 2-stage protocol of Rost and Sander, with a number of Elman-type recurrent neural networks (NNs) combined into a consensus predictor. The RSA is predicted using our recently developed regression-based method that provides real-valued RSA, with the overall correlation coefficients between the actual and predicted RSA of about 0.66 in rigorous tests on independent control sets. Using the predicted RSA, we were able to improve the performance of our secondary structure prediction by up to 1.4% and achieved the overall per-residue accuracy between 77.0% and 78.4% for the 3-state classification problem on different control sets comprising, together, 603 proteins without homology to proteins included in the training. The effects of including solvent accessibility depend on the quality of RSA prediction. In the limit of perfect prediction (i.e., when using the actual RSA values derived from known protein structures), the accuracy of secondary structure prediction increases by up to 4%. We also observed that projecting real-valued RSA into 2 discrete classes with the commonly used threshold of 25% RSA decreases the classification accuracy for secondary structure prediction. While the level of improvement of secondary structure prediction may be different for prediction protocols that implicitly account for RSA in other ways, we conclude that an increase in the 3-state classification accuracy may be achieved when combining RSA with a state-of-the-art protocol utilizing evolutionary profiles. The new method is available through a Web server at http://sable.cchmc.org.  相似文献   

5.
Garg A  Kaur H  Raghava GP 《Proteins》2005,61(2):318-324
The present study is an attempt to develop a neural network-based method for predicting the real value of solvent accessibility from the sequence using evolutionary information in the form of multiple sequence alignment. In this method, two feed-forward networks with a single hidden layer have been trained with standard back-propagation as a learning algorithm. The Pearson's correlation coefficient increases from 0.53 to 0.63, and mean absolute error decreases from 18.2 to 16% when multiple-sequence alignment obtained from PSI-BLAST is used as input instead of a single sequence. The performance of the method further improves from a correlation coefficient of 0.63 to 0.67 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields a mean absolute error value of 15.2% between the experimental and predicted values, when tested on two different nonhomologous and nonredundant datasets of varying sizes. The method consists of two steps: (1) in the first step, a sequence-to-structure network is trained with the multiple alignment profiles in the form of PSI-BLAST-generated position-specific scoring matrices, and (2) in the second step, the output obtained from the first network and PSIPRED-predicted secondary structure information is used as an input to the second structure-to-structure network. Based on the present study, a server SARpred (http://www.imtech.res.in/raghava/sarpred/) has been developed that predicts the real value of solvent accessibility of residues for a given protein sequence. We have also evaluated the performance of SARpred on 47 proteins used in CASP6 and achieved a correlation coefficient of 0.68 and a MAE of 15.9% between predicted and observed values.  相似文献   

6.
The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure prediction methods available in the literature, their cross-validated prediction accuracy is generally <80%. In order to increase the prediction accuracy, we developed a novel hybrid algorithm called Consensus Data Mining (CDM) that combines our two previous successful methods: (1) Fragment Database Mining (FDM), which exploits the Protein Data Bank structures, and (2) GOR V, which is based on information theory, Bayesian statistics, and multiple sequence alignments (MSA). In CDM, the target sequence is dissected into smaller fragments that are compared with fragments obtained from related sequences in the PDB. For fragments with a sequence identity above a certain sequence identity threshold, the FDM method is applied for the prediction. The remainder of the fragments are predicted by GOR V. The results of the CDM are provided as a function of the upper sequence identities of aligned fragments and the sequence identity threshold. We observe that the value 50% is the optimum sequence identity threshold, and that the accuracy of the CDM method measured by Q(3) ranges from 67.5% to 93.2%, depending on the availability of known structural fragments with sufficiently high sequence identity. As the Protein Data Bank grows, it is anticipated that this consensus method will improve because it will rely more upon the structural fragments.  相似文献   

7.
Kaur H  Raghava GP 《FEBS letters》2004,564(1-2):47-57
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).  相似文献   

8.
In this paper we present a novel approach to membrane protein secondary structure prediction based on the statistical stepwise discriminant analysis method. A new aspect of our approach is the possibility to derive physical-chemical properties that may affect the formation of membrane protein secondary structure. The certain physical-chemical properties of protein chains can be used to clarify the formation of the secondary structure types under consideration. Another aspect of our approach is that the results of multiple sequence alignment, or the other kinds of sequence alignment, are not used in the frame of the method. Using our approach, we predicted the formation of three main secondary structure types (alpha-helix, beta-structure and coil) with high accuracy, that is Q(3) = 76%. Predicting the formation of alpha-helix and non-alpha-helix states we reached the accuracy which was measured as Q(2) = 86%. Also we have identified certain protein chain properties that affect the formation of membrane protein secondary structure. These protein properties include hydrophobic properties of amino acid residues, presence of Gly, Ala and Val amino acids, and the location of protein chain end.  相似文献   

9.
J M Chandonia  M Karplus 《Proteins》1999,35(3):293-306
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.  相似文献   

10.
Kaur H  Raghava GP 《Proteins》2004,55(1):83-90
In this paper a systematic attempt has been made to develop a better method for predicting alpha-turns in proteins. Most of the commonly used approaches in the field of protein structure prediction have been tried in this study, which includes statistical approach "Sequence Coupled Model" and machine learning approaches; i) artificial neural network (ANN); ii) Weka (Waikato Environment for Knowledge Analysis) Classifiers and iii) Parallel Exemplar Based Learning (PEBLS). We have also used multiple sequence alignment obtained from PSIBLAST and secondary structure information predicted by PSIPRED. The training and testing of all methods has been performed on a data set of 193 non-homologous protein X-ray structures using five-fold cross-validation. It has been observed that ANN with multiple sequence alignment and predicted secondary structure information outperforms other methods. Based on our observations we have developed an ANN-based method for predicting alpha-turns in proteins. The main components of the method are two feed-forward back-propagation networks with a single hidden layer. The first sequence-structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position specific scoring matrices. The initial predictions obtained from the first network and PSIPRED predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. The final network yields an overall prediction accuracy of 78.0% and MCC of 0.16. A web server AlphaPred (http://www.imtech.res.in/raghava/alphapred/) has been developed based on this approach.  相似文献   

11.
MOTIVATION: Accurate multiple sequence alignments are essential in protein structure modeling, functional prediction and efficient planning of experiments. Although the alignment problem has attracted considerable attention, preparation of high-quality alignments for distantly related sequences remains a difficult task. RESULTS: We developed PROMALS, a multiple alignment method that shows promising results for protein homologs with sequence identity below 10%, aligning close to half of the amino acid residues correctly on average. This is about three times more accurate than traditional pairwise sequence alignment methods. PROMALS algorithm derives its strength from several sources: (i) sequence database searches to retrieve additional homologs; (ii) accurate secondary structure prediction; (iii) a hidden Markov model that uses a novel combined scoring of amino acids and secondary structures; (iv) probabilistic consistency-based scoring applied to progressive alignment of profiles. Compared to the best alignment methods that do not use secondary structure prediction and database searches (e.g. MUMMALS, ProbCons and MAFFT), PROMALS is up to 30% more accurate, with improvement being most prominent for highly divergent homologs. Compared to SPEM and HHalign, which also employ database searches and secondary structure prediction, PROMALS shows an accuracy improvement of several percent. AVAILABILITY: The PROMALS web server is available at: http://prodata.swmed.edu/promals/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

12.
In this study we present an accurate secondary structure prediction procedure by using a query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable. Proteins 27:329–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
MOTIVATION: Membrane domain prediction has recently been re-evaluated by several groups, suggesting that the accuracy of existing methods is still rather limited. In this work, we revisit this problem and propose novel methods for prediction of alpha-helical as well as beta-sheet transmembrane (TM) domains. The new approach is based on a compact representation of an amino acid residue and its environment, which consists of predicted solvent accessibility and secondary structure of each amino acid. A recently introduced method for solvent accessibility prediction trained on a set of soluble proteins is used here to indicate segments of residues that are predicted not to be accessible to water and, therefore, may be 'buried' in the membrane. While evolutionary profiles in the form of a multiple alignment are used to derive these simple 'structural profiles', they are not used explicitly for the membrane domain prediction and the overall number of parameters in the model is significantly reduced. This offers the possibility of a more reliable estimation of the free parameters in the model with a limited number of experimentally resolved membrane protein structures. RESULTS: Using cross-validated training on available sets of structurally resolved and non-redundant alpha and beta membrane proteins, we demonstrate that membrane domain prediction methods based on such a compact representation outperform approaches that utilize explicitly evolutionary profiles and multiple alignments. Moreover, using an external evaluation by the TMH Benchmark server we show that our final prediction protocol for the TM helix prediction is competitive with the state-of-the-art methods, achieving per-residue accuracy of approximately 89% and per-segment accuracy of approximately 80% on the set of high resolution structures used by the TMH Benchmark server. At the same time the observed rates of confusion with signal peptides and globular proteins are the lowest among the tested methods. The new method is available online at http://minnou.cchmc.org.  相似文献   

14.
The prediction of the secondary structure of proteins from their amino acid sequences remains a key component of many approaches to the protein folding problem. The most abundant form of regular secondary structure in proteins is the alpha-helix, in which specific residue preferences exist at the N-terminal locations. Propensities derived from these observed amino acid frequencies in the Protein Data Bank (PDB) database correlate well with experimental free energies measured for residues at different N-terminal positions in alanine-based peptides. We report a novel method to exploit this data to improve protein secondary structure prediction through identification of the correct N-terminal sequences in alpha-helices, based on existing popular methods for secondary structure prediction. With this algorithm, the number of correctly predicted alpha-helix start positions was improved from 30% to 38%, while the overall prediction accuracy (Q3) remained the same, using cross-validated testing. Although the algorithm was developed and tested on multiple sequence alignment-based secondary structure predictions, it was also able to improve the predictions of start locations by methods that use single sequences to make their predictions. Furthermore, the residue frequencies at N-terminal positions of the improved predictions better reflect those seen at the N-terminal positions of alpha-helices in proteins. This has implications for areas such as comparative modeling, where a more accurate prediction of the N-terminal regions of alpha-helices should benefit attempts to model adjacent loop regions. The algorithm is available as a Web tool, located at http://rocky.bms.umist.ac.uk/elephant.  相似文献   

15.
1 Introduction The prediction of protein structure and function from amino acid sequences is one of the most impor-tant problems in molecular biology. This problem is becoming more pressing as the number of known pro-tein sequences is explored as a result of genome and other sequencing projects, and the protein sequence- structure gap is widening rapidly[1]. Therefore, com-putational tools to predict protein structures are needed to narrow the widening gap. Although the prediction of three dim…  相似文献   

16.
The capability of predicting folding and conformation of a protein from its primary structure is probably one of the main goals of modern biology. An accurate prediction of solvent accessibility is an intermediate step along this way. A new method for predicting solvent accessibility from single sequence and multiple alignment data is described. The method is based on probability profiles calculated on an amino acid sequence centred on the residue whose accessibility has to be predicted. A profile is constructed for each exposure category considered so as to calculate the probability of a sequence being generated by the different profiles. Prediction accuracy was tested on a variety of protein sets with two- and three-state models. Different thresholds were used according to those adopted by the authors proposing the data sets. The prediction accuracy is significantly improved over existing methods.  相似文献   

17.
One of the challenges in protein secondary structure prediction is to overcome the cross-validated 80% prediction accuracy barrier. Here, we propose a novel approach to surpass this barrier. Instead of using a single algorithm that relies on a limited data set for training, we combine two complementary methods having different strengths: Fragment Database Mining (FDM) and GOR V. FDM harnesses the availability of the known protein structures in the Protein Data Bank and provides highly accurate secondary structure predictions when sequentially similar structural fragments are identified. In contrast, the GOR V algorithm is based on information theory, Bayesian statistics, and PSI-BLAST multiple sequence alignments to predict the secondary structure of residues inside a sliding window along a protein chain. A combination of these two different methods benefits from the large number of structures in the PDB and significantly improves the secondary structure prediction accuracy, resulting in Q3 ranging from 67.5 to 93.2%, depending on the availability of highly similar fragments in the Protein Data Bank.  相似文献   

18.
The most popular algorithms employed in the pairwise alignment of protein primary structures (Smith-Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accurate algorithm taking the secondary structure of proteins into account. The alignments generated by this algorithm and having the maximal weight with the secondary structure considered proved to be more accurate than SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algorithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins with unknown spatial structures. The program is available at ftp://194.149.64.196/STRUSWER/.  相似文献   

19.
MOTIVATION: The quality of a model structure derived from a comparative modeling procedure is dictated by the accuracy of the predicted sequence-template alignment. As the sequence-template pairs are increasingly remote in sequence relationship, the prediction of the sequence-template alignments becomes increasingly problematic with sequence alignment methods. Structural information of the template, used in connection with the sequence relationship of the sequence-template pair, could significantly improve the accuracy of the sequence-template alignment. In this paper, we describe a sequence-template alignment method that integrates sequence and structural information to enhance the accuracy of sequence-template alignments for distantly related protein pairs. RESULTS: The structure-dependent sequence alignment (SDSA) procedure was optimized for coverage and accuracy on a training set of 412 protein pairs; the structures for each of the training pairs are similar (RMSD< approximately 4A) but the sequence relationship is undetectable (average pair-wise sequence identity = 8%). The optimized SDSA procedure was then applied to extend PSI-BLAST local alignments by calculating the global alignments under the constraint of the residue pairs in the local alignments. This composite alignment procedure was assessed with a testing set of 1421 protein pairs, of which the pair-wise structures are similar (RMSD< approximately 4A) but the sequences are marginally related at best in each pair (average pair-wise sequence identity = 13%). The assessment showed that the composite alignment procedure predicted more aligned residues pairs with an average of 27% increase in correctly aligned residues over the standard PSI-BLAST alignments for the protein pairs in the testing set.  相似文献   

20.
MOTIVATION: How critical is the sequence order information in predicting protein secondary structure segments? We tried to get a rough insight on it from a theoretical approach using both a prediction algorithm and structural fragments from Protein Databank (PDB). RESULTS: Using reverse protein sequences and PDB structural fragments, we theoretically estimated the significance of the order for protein secondary structure and prediction. On average: (1) 79% of protein sequence segments resulted in the same prediction in both normal and reverse directions, which indicated a relatively high conservation of secondary structure propensity in the reverse direction; (2) the reversed sequence prediction alone performed less accurately than the normal forward sequence prediction, but comparably high (2% difference); (3) the commonly predicted regions showed a slightly higher prediction accuracy (4%) than the normal sequences prediction; and (4) structural fragments which have counterparts in reverse direction in the same protein showed a comparable degree of secondary structure conservation (73% identity with reversed structures on average for pentamers). CONTACT: jong@biosophy.org; dietmann@ebi.ac.uk; heger@ebi.ac.uk; holm@ebi.ac.uk  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号