首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioesterase II is a 29-kDa monomer which, in certain specialized tissues, acts as a chain terminator in fatty acid synthesis by hydrolyzing medium-chain fatty acids from the fatty acid synthase. As with serine proteases, hydrolysis appears to involve acylation of the active site serine residue (Ser-101) assisted by a histidine, tentatively identified as His-237. To determine whether in the folded protein His-237 is close enough to accept a proton from the Ser-101 hydroxyl, we have made use of a Ser101Cys mutant which retains up to 90% of catalytic activity. Unlike the wild-type enzyme, the S101C thioesterase is inhibited with stoichiometric amounts of the bifunctional alkylating reagent 1,3-dibromopropanone. To facilitate identification of the alkylated residue(s), the keto group introduced into the dibromopropanone-modified S101C mutant was radiolabeled by reduction with sodium [3H] borohydride. The protein was then digested and the radiolabeled peptides analyzed by amino acid sequencing and mass spectrometry. The experimental data unambiguously showed that dibromopropanone cross-linked the active site Cys-101 with His-237, demonstrating that these residues are positioned within 5 A of each other. These data strongly support the hypothesis that in the wild-type thioesterase His-237 accepts a proton from Ser-101, thus increasing its nucleophilic character and improving the catalytic efficiency of the enzyme. The possibility that exchange of cysteine and serine active site residues has occurred in the evolution of thioesterases is discussed.  相似文献   

2.
Long-chain acyl-CoA thioesterases hydrolyze long-chain acyl-CoAs to the corresponding free fatty acid and CoASH and may therefore play important roles in regulation of lipid metabolism. We have recently cloned four members of a highly conserved acyl-CoA thioesterase multigene family expressed in cytosol (CTE-I), mitochondria (MTE-I), and peroxisomes (PTE-Ia and -Ib), all of which are regulated via the peroxisome proliferator-activated receptor alpha (Hunt, M. C., Nousiainen, S. E. B., Huttunen, M. K., Orii, K. E., Svensson, L. T., and Alexson, S. E. H. (1999) J. Biol. Chem. 274, 34317-34326). Sequence comparison revealed the presence of putative active-site serine motifs (GXSXG) in all four acyl-CoA thioesterases. In the present study we have expressed CTE-I in Escherichia coli and characterized the recombinant protein with respect to sensitivity to various amino acid reactive compounds. The recombinant CTE-I was inhibited by phenylmethylsulfonyl fluoride and diethyl pyrocarbonate, suggesting the involvement of serine and histidine residues for the activity. Extensive sequence analysis pinpointed Ser(232), Asp(324), and His(358) as the likely components of a catalytic triad, and site-directed mutagenesis verified the importance of these residues for the catalytic activity. A S232C mutant retained about 2% of the wild type activity and incubation with (14)C-palmitoyl-CoA strongly labeled this mutant protein, in contrast to wild-type enzyme, indicating that deacylation of the acyl-enzyme intermediate becomes rate-limiting in this mutant protein. These data are discussed in relation to the structure/function of acyl-CoA thioesterases versus acyltransferases. Furthermore, kinetic characterization of recombinant CTE-I showed that this enzyme appears to be a true acyl-CoA thioesterase being highly specific for C(12)-C(20) acyl-CoAs.  相似文献   

3.
Changing a catalytic cysteine into a serine, and vice versa, generally leads to a dramatic decrease in enzymatic efficiency. Except a study done on thiol subtilisin, no extensive study was carried out for determining whether the decrease in activity is due to a low nucleophilicity of the introduced amino acid. In the present study, Cys149 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus was converted into a Ser residue. This leads to a drastic reduction of the kcat value. The rate-limiting step occurs before the hydride transfer step. Selective, but slow, inactivation is observed with specific, structurally different, inhibitors of serine protease. The esterolytic activity of serine mutant towards activated esters is also strongly decreased. The rate-limiting step of the esterase reaction also shifts from deacylation in the wild type to acylation in the mutant. Altogether, these results strongly suggest that the low catalytic efficiency of the Ser mutant is due to a poor nucleophilicity of the hydroxyl serine group within the active site of the enzyme. The fact that (1) the apo --> holo transition does not change esterolytic and inactivating efficiencies, and (2) Ser149 Asn176 double mutant exhibits the same chemical reactivity and esterolytic catalytic efficiency compared to the Ser149 single mutant indicates that the serine residue is not subject to His176 general base catalysis. A linear relationship between the catalytic dehydrogenase rate, the kcat/KM for esterolysis, and the concentration of OH- is observed, thus supporting the alcoholate entity as the attacking reactive species. Collectively this study shows that the active site environment of GAPDH is not adapted to increase the nucleophilicity of a serine residue. This is discussed in relation to what is known about Ser and Cys protease active sites.  相似文献   

4.
Recent studies on type II thioesterases (TEIIs) involved in microbial secondary metabolism described a role for these enzymes in the removal of short acyl-S- phosphopantetheine intermediates from misprimed holo-(acyl carrier proteins) and holo-(peptidyl carrier proteins) of polyketide synthases and nonribosomal peptide synthetases. Because of the absence of structural information on this class of enzymes, we performed a mutational analysis on a prototype TEII essential for efficient production of the lipopeptide antibiotic surfactin (TEII(srf)), which led to identification of catalytic and structural residues. On the basis of sequence alignment of 16 TEIIs, 10 single and one double mutant of highly conserved residues of TEII(srf) were constructed and biochemically investigated. We clearly identified a catalytic triad consisting of Ser86, Asp190 and His216, suggesting that TEII(srf) belongs to the alpha/beta-hydrolase superfamily. Exchange of these residues with residues with aliphatic side chains abolished enzyme activity, whereas replacement of the active-site Ser86 with cysteine produced an enzyme with marginally reduced activity. In contrast, exchange of the second strictly conserved asparagine (Asp163) with Ala resulted in an active but unstable enzyme, excluding a role for this residue in catalysis and suggesting a structural function. The results define three catalytic and at least one structural residue in a nonribosomal peptide synthetase TEII.  相似文献   

5.
S-Formylglutathione hydrolases (SFGHs) are highly conserved thioesterases present in prokaryotes and eukaryotes, and form part of the formaldehyde detoxification pathway, as well as functioning as xenobiotic-hydrolysing carboxyesterases. As defined by their sensitivity to covalent modification, SFGHs behave as cysteine hydrolases, being inactivated by thiol alkylating agents, while being insensitive to inhibition by organophosphates such as paraoxon. As such, the enzyme has been classified as an esterase D in animals, plants and microbes. While SFGHs do contain a conserved cysteine residue that has been implicated in catalysis, sequence analysis also reveals the classic catalytic triad of a serine hydrolase. Using a combination of selective protein modification and X-ray crystallography, AtSFGH from Arabidopsis thaliana has been shown to be a serine hydrolase rather than a cysteine hydrolase. Uniquely, the conserved reactive cysteine (Cys59) previously implicated in catalysis lies in close proximity to the serine hydrolase triad, serving a gate-keeping function in comprehensively regulating access to the active site. Thus, any covalent modification of Cys59 inhibited all hydrolase activities of the enzyme. When isolated from Escherichia coli, a major proportion of recombinant AtSFGH was recovered with the Cys59 forming a mixed disulfide with glutathione. Reversible disulfide formation with glutathione could be demonstrated to regulate hydrolase activity in vitro. The importance of Cys59 in regulating AtSFGH in planta was demonstrated in transient expression assays in Arabidopsis protoplasts. As determined by fluorescence microscopy, the Cys59Ser mutant enzyme was shown to rapidly hydrolyse 4-methylumbelliferyl acetate in paraoxon-treated cells, while the native enzyme was found to be inactive. Our results clarify the classification of AtSFGHs as hydrolases and suggest that the regulatory and conserved cysteine provides an unusual redox-sensitive regulation to an enzyme functioning in both primary and xenobiotic metabolism in prokaryotes and eukaryotes.  相似文献   

6.
Previous structural studies based on the co-crystal of a complex between bovine pancreatic deoxyribonuclease I (bpDNase I) and a double-stranded DNA octamer d(GCGATCGC)(2) have suggested the presence of a putative secondary active site near Ser43. In our present study, several crucial amino acid residues postulated in this putative secondary active site, including Thr14, Ser43, and His44 were selected for site-directed mutagenesis. A series of single, double and triple mutants were thus constructed and tested for their DNase I activity by hyperchromicity assay. Substitution of each or both of Thr14 and Ser43 by alanine results in mutant enzymes retaining 30-70% of WT bpDNase I activity. However, when His44 was replaced by aspartic acid, either in the single, double, or triple mutant, the enzyme activities were drastically decreased to 0.5-5% that of WT bpDNase I. Interestingly, when cysteine was substituted for Thr14 or Ser43, the specific DNase activities of the mutant enzymes were substantially increased by 1.5-100-fold, comparing to their alanine substitution mutant counterparts. Two other more sensitive DNase activity assay method, plasmid scission and zymogram analyses further confirm these observations. These results suggested that His44 may play a critical role in substrate DNA binding in this putative secondary active site, and introduction of sulfhydryl groups at Thr14 and Ser43 may facilitate Mn(2+)-coordination and further contribute to the catalytic activity of bpDNase I.  相似文献   

7.
The function of conserved Ser-148 of chloramphenicol acetyltransferase (CAT) has been investigated by site-directed mutagenesis. Modeling studies (P. C. E. Moody and A. G. W. Leslie, unpublished results) suggested that the hydroxyl group of Ser-148 could be involved in transition-state stabilization via a hydrogen bond to the oxyanion of the putative tetrahedral intermediate. Replacement of serine by alanine results in a mutant enzyme (Ala-148 CAT) with kcat reduced 53-fold and only minor changes in Km values for chloramphenicol and acetyl-CoA. The Ser-148----Gly substitution gives rise to a mutant enzyme (Gly-148 CAT) with kcat reduced only 10-fold. A water molecule may partially replace the hydrogen-bonding potential of Ser-148 in Gly-148 CAT. The three-dimensional structure of Ala-148 CAT at 2.34-A resolution is isosteric with that of wild-type CAT with two exceptions: the absence of the Ser-148 hydroxyl group and the loss of one poorly ordered water molecule from the active site region. The results are consistent with a catalytic role for Ser-148 rather than a structural one and support the hypothesis that Ser-148 is involved in transition-state stabilization. Ser-148 has also been replaced with cysteine and asparagine; the Ser-148----Cys mutation results in a 705-fold decrease in kcat and the Ser-148----Asn substitution in a 214-fold reduction in kcat. Removing the hydrogen bond donor (Ser-148----Ala or Gly) is less deleterious than replacing Ser-148 with alternative possible hydrogen bond donors (Ser-148----Cys or Asn).  相似文献   

8.
The importance of various residues in the Streptomyces R61 penicillin-sensitive DD-peptidase has been assessed by site-directed mutagenesis. The replacement of the active Ser62 by a Cys residue yielded an inactive protein which was also unable to recognize penicillin. The activity of the Lys65----Arg mutant with the peptide and thiolester substrates was decreased 100-200-fold and the rate of penicillin inactivation was decreased 20,000-fold or more. The mutant thus behaved as a poor, but penicillin-resistant, DD-peptidase. The other studied mutations, the mutations Phe58----Leu, Tyr90----Asn, Thr101----Asn, Phe164----Ala, Asp225----Glu and Asp225----Asn had little influence on the catalytic and penicillin-binding properties. The Asp225 mutants did not exhibit an increased sensitivity to cefotaxime. The Phe164----Ala mutant was significantly more unstable than the wild-type enzyme.  相似文献   

9.
10.
A catalytic role for histidine 237 in rat mammary gland thioesterase II   总被引:2,自引:0,他引:2  
The involvement of a histidyl residue in the catalytic mechanism of thioesterase II, a serine active-site enzyme that catalyzes the chain terminating reaction in de novo fatty acid synthesis, has been inferred from studies with the inhibitor diethyl pyrocarbonate. Its likely location has been predicted by identification of conserved residues in related thioesterases and ultimately confirmed by site-directed mutagenesis. Diethyl pyrocarbonate inactivated the enzyme with a second-order rate constant of 49 M-1 s-1 at pH 6, 10 degrees C. Data analysis indicated that although several residues reacted with the reagent, modification of a single residue was responsible for the inactivation. Removal of a single ethoxycarbonyl moiety by treatment with neutral hydroxylamine completely restored enzyme activity. Prior ethoxycarbonylation of the histidyl residue blocked the ability of the active-site serine to react with phenylmethanesulfonyl fluoride. Comparison of the amino acid sequences of five structurally related proteins indicated that only 1 histidine has been completely conserved. Replacement of this residue in rat thioesterase II (His-237) with arginine and leucine by mutagenesis reduced the catalytic activity by 2-3 orders of magnitude. The activity of the mutant thioesterases, unlike that of the wild-type enzyme, was relatively insensitive to inhibition by diethyl pyrocarbonate and phenylmethylsulfonyl fluoride. These studies provide strong evidence that His-237 is involved directly in catalysis and suggest that its role is to increase the nucleophilic character of the active-site Ser-101 by acting as a proton acceptor thus facilitating acylation of the seryl residue. The mechanism appears to share certain common features with the charge-relay system characteristic of other esterases.  相似文献   

11.
Z I Randhawa  S Smith 《Biochemistry》1987,26(5):1365-1373
The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated Mr of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis [Poulose, A.J., Rogers, L., Cheesbrough, T. M., & Kolattukudy, P. E. (1985) J. Biol. Chem. 260, 15953-15958]. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.  相似文献   

12.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

13.
Kim EJ  Feng J  Bramlett MR  Lindahl PA 《Biochemistry》2004,43(19):5728-5734
Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO(2) at a nickel-iron-sulfur active site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semiconserved histidine residues were individually mutated to alanine. His116 and His122 were essential to catalysis, while His113 and His119 attenuated catalysis but were not essential. Significant activity was "rescued" by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. The activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or position 123. Activity was also rescued by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway. The Ser mutant of the persulfide-forming Cys316 was essentially inactive and displayed no electron paramagnetic resonance signals originating from the C-cluster. Electronic absorption and metal analysis suggest that the C-cluster is absent in this mutant. The persulfide bond appears to be essential for either the assembly or the stability of the C-cluster, and possibly for eliciting the redox chemistry of the C-cluster required for catalytic activity.  相似文献   

14.
Type II thioesterases (TE IIs) were shown to maintain the efficiency of polyketide synthases (PKSs) by removing acyl residues blocking extension modules. However, the substrate specificity and kinetic parameters of these enzymes differ, which may have significant consequences when they are included in engineered hybrid systems for the production of novel compounds. Here we show that thioesterase ScoT associated with polyketide synthase Cpk from Streptomyces coelicolor A3(2) is able to hydrolyze acetyl, propionyl, and butyryl residues, which is consistent with its editing function. This enzyme clearly prefers propionate, in contrast to the TE IIs tested previously, and this indicates that it may have a role in control of the starter unit. We also determined activities of ScoT mutants and concluded that this enzyme is an α/β hydrolase with Ser90 and His224 in its active site.  相似文献   

15.
The hotdog-fold enzyme 4-hydroxybenzoyl-coenzyme A (4-HB-CoA) thioesterase from Arthrobacter sp. strain AU catalyzes the hydrolysis of 4-HB-CoA to form 4-hydroxybenzoate (4-HB) and coenzyme A (CoA) in the final step of the 4-chlorobenzoate dehalogenation pathway. Guided by the published X-ray structures of the liganded enzyme (Thoden, J. B., Zhuang, Z., Dunaway-Mariano, D., and Holden H. M. (2003) J.Biol. Chem. 278, 43709-43716), a series of site-directed mutants were prepared for testing the roles of active site residues in substrate binding and catalysis. The mutant thioesterases were subjected to X-ray structure determination to confirm retention of the native fold, and in some cases, to reveal changes in the active site configuration. In parallel, the wild-type and mutant thioesterases were subjected to transient and steady-state kinetic analysis, and to (18)O-solvent labeling experiments. Evidence is provided that suggests that Glu73 functions in nucleophilic catalysis, that Gly65 and Gln58 contribute to transition-state stabilization via hydrogen bond formation with the thioester moiety and that Thr77 orients the water nucleophile for attack at the 4-hydroxybenzoyl carbon of the enzyme-anhydride intermediate. The replacement of Glu73 with Asp was shown to switch the function of the carboxylate residue from nucleophilic catalysis to base catalysis and thus, the reaction from a two-step process involving a covalent enzyme intermediate to a single-step hydrolysis reaction. The E73D/T77A double mutant regained most of the catalytic efficiency lost in the E73D single mutant. The results from (31)P NMR experiments indicate that the substrate nucleotide unit is bound to the enzyme surface. Kinetic analysis of site-directed mutants was carried out to determine the contributions made by Arg102, Arg150, Ser120, and Thr121 in binding the nucleotide unit. Lastly, we show by kinetic and X-ray analyses of Asp31, His64, and Glu78 site-directed mutants that these three active site residues are important for productive binding of the substrate 4-hydroxybenzoyl ring.  相似文献   

16.
We are probing the determinants of catalytic function and substrate specificity in serine proteases by kinetic and crystallographic characterization of genetically engineered site-directed mutants of rat trypsin. The role of the aspartyl residue at position 102, common to all members of the serine protease family, has been tested by substitution with asparagine. In the native enzyme, Asp102 accepts a hydrogen bond from the catalytic base His57, which facilitates the transfer of a proton from the enzyme nucleophile Ser195 to the substrate leaving group. At neutral pH, the mutant is four orders of magnitude less active than the naturally occurring enzyme, but its binding affinity for model substrates is virtually undiminished. Crystallographic analysis reveals that Asn102 donates a hydrogen bond to His57, forcing it to act as donor to Ser195. Below pH 6, His57 becomes statistically disordered. Presumably, the di-protonated population of histidyl side chains are unable to hydrogen bond to Asn102. Steric conflict may cause His57 to rotate away from the catalytic site. These results suggest that Asp102 not only provides inductive and orientation effects, but also stabilizes the productive tautomer of His57. Three experiments were carried out to alter the substrate specificity of trypsin. Glycine residues at positions 216 and 226 in the substrate-binding cavity were replaced by alanine residues in order to differentially affect lysine and arginine substrate binding. While the rate of catalysis by the mutant enzymes was reduced in the mutant enzymes, their substrate specificity was enhanced relative to trypsin. The increased specificity was caused by differential effects on the catalytic activity towards arginine and lysine substrates. The Gly----Ala substitution at 226 resulted in an altered conformation of the enzyme which is converted to an active trypsin-like conformation upon binding of a substrate analog. In a third experiment, Lys189, at the bottom of the specificity pocket, was replaced with an aspartate with the expectation that specificity of the enzyme might shift to aspartate. The mutant enzyme is not capable of cleaving at Arg and Lys or Asp, but shows an enhanced chymotrypsin-like specificity. Structural investigations of these mutants are in progress.  相似文献   

17.
Yuan H  Gadda G 《Biochemistry》2011,50(5):770-779
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.  相似文献   

18.
A mutant of papain, where an inter-domain hydrogen bond between the side chain hydroxyl group of a serine residue at position 176 and the side chain carbonyl oxygen of a glutamine residue at position 19 has been removed by site-directed mutagenesis, has been produced and characterized kinetically. The mutation of Ser176 to an alanine has only a small effect on the kinetic parameters, the kcat/Km for hydrolysis of CBZ-Phe-Arg-MCA by the Ser176Ala enzyme being of 8.1 x 10(4) /M/s compared with 1.2 x 10(5) /M/s for papain. Serine 176 is therefore not essential for the catalytic functioning of papain, even though this residue is conserved in all cysteine proteases sequenced. The pH-activity profiles were shown to be narrower in the mutant enzyme by up to 1 pH unit at high ionic strength. This result is interpreted to indicate that replacing Ser176 by an alanine destabilizes the thiolate-imidazolium form of the catalytic site Cys25-His159 residues of papain. Possible explanations for that effect are given and the role of a serine residue at position 176 in papain is discussed.  相似文献   

19.
Eleven amino acid substitutions at Val-121 of human carbonic anhydrase II including Gly, Ala, Ser, Leu, Ile, Lys, and Arg, were constructed by site-directed mutagenesis. This residue is at the mouth of the hydrophobic pocket in the enzyme active site. The CO2 hydrase activity and the p-nitrophenyl esterase activity of these CAII variants correlate with the hydrophobicity of the residue, suggesting that the hydrophobic character of this residue is important for catalysis. The effects of these mutations on the steady-state kinetics for CO2 hydration occur mainly in kcat/Km and Km, consistent with involvement of this residue in CO2 association. The Val-121----Ala mutant, which exhibits about one-third normal CO2 hydrase activity, has been studied by x-ray crystallographic methods. No significant changes in the mutant enzyme conformation are evident relative to the wild-type enzyme. Since Val-121 is at the mouth of the hydrophobic pocket, its substitution by the methyl side chain of alanine makes the pocket mouth significantly wider than that of the wild-type enzyme. Hence, although a moderately wide (and deep) pocket is important for substrate association, a wider mouth to this pocket does not seriously compromise the catalytic approach of CO2 toward nucleophilic zinc-bound hydroxide.  相似文献   

20.
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号