共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionizing radiation is unequivocally leukemogenic and carcinogenic, and this is generally attributed to DNA damage arising as a consequence of deposition of energy in the cell nucleus at the time of exposure. However, nontargeted effects, in which DNA damage is produced in nonirradiated cells as a consequence of cell signaling processes, indicate additional mechanisms. Radiation-induced chromosomal instability, a nontargeted effect with the potential to produce pathological consequences, is characterized by an increased rate of chromosome aberrations many generations after the initial insult. In this study, using a mouse model that has been well characterized with respect to its susceptibility to both radiation-induced chromosomal instability and acute myeloid leukemia, we investigated whether the underlying signaling mechanism was an inflammatory process by studying the effects of a nonsteroidal anti-inflammatory drug. Treated mice showed significant reduction in expression of the chromosomal instability phenotype 100 days postirradiation associated with reduced expression of inflammatory markers. The data support the hypothesis that the radiation-induced chromosomal instability phenotype is not an intrinsic property of the cells but a consequence of inflammatory processes having the potential to contribute secondary damage expressed as nontargeted and delayed radiation effects. 相似文献
3.
NBS1, a protein essential for DNA double-strand break repair, relocalizes into subnuclear structures upon induction of DNA damage by ionizing radiation, forming ionizing radiation-induced foci. We compared radiation-induced NBS1 foci in peripheral blood lymphocytes (PBLs) from 46 sporadic breast cancer patients and 30 healthy cancer-free volunteers. The number of persistent radiation-induced NBS1 foci per nucleus at 24 h after irradiation for patients with invasive cancer was significantly higher than for normal healthy volunteers. The frequency of spontaneous chromosome aberration increased as the number of persistent radiation-induced NBS1 foci increased, indicating that the number of persistent radiation-induced NBS1 foci might be associated with chromosome instability. There was also an inverse correlation between the number of radiation-induced NBS1 foci and the activity of DNA-dependent protein kinase (DNA-PK), which plays an important role in the nonhomologous end-joining (NHEJ) pathway, another mechanism of DNA DSB repair, indicating a close interrelationship between homologous recombination (HR) and NHEJ in DNA DSB repair. In conclusion, the number of persistent radiation-induced NBS1 foci is associated with chromosomal instability and risk of sporadic breast cancer and hence might be used to select individuals for whom a detailed examination is necessary because of their increased susceptibility to breast cancer, although refinement of the techniques for technical simplicity and accuracy will be required for clinical use. 相似文献
5.
Hybridization is an important cause of abrupt speciation. Hybrid speciation without a change in ploidy (homoploid hybrid speciation) is well-established in plants but has also been reported in animals and fungi. A notable example of recent homoploid hybrid speciation is Senecio squalidus (Oxford ragwort), which originated in the UK in the 18th Century following introduction of hybrid material from a hybrid zone between S. chrysanthemifolius and S. aethnensis on Mount Etna, Sicily. To investigate genetic divergence between these taxa, we used complementary DNA microarrays to compare patterns of floral gene expression. These analyses revealed major differences in gene expression between the parent species and wild and resynthesized S. squalidus . Comparisons of gene expression between S. aethnensis , S. chrysanthemifolius and natural S. squalidus identified genes potentially involved in local environmental adaptation. The analysis also revealed non-additive patterns of gene expression in the hybrid relative to its progenitors. These expression changes were more dramatic and widespread in resynthesized hybrids than in natural S. squalidus , suggesting that a unique expression pattern may have been fixed during the allopatric divergence of British S. squalidus . We speculate that hybridization-induced gene-expression change may provide an immediate source of novel phenotypic variation upon which selection can act to facilitate homoploid hybrid speciation in plants. 相似文献
6.
Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p ≤ 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p ≤ 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal cells from X-ray-treated female rats and that this RIGI enhances the chromosomal damage caused by the chemical agent aphidicolin. 相似文献
7.
Radiation-induced genomic instability (RIGI) manifests in the progeny of cells surviving ionizing radiation (IR), and can be measured using such endpoints as delayed mutation, micronuclei formation, and chromosomal instability. The frequency of RIGI is relatively high, exceeding the gene mutation rate of IR by orders of magnitude, leading to conjecture that a gene mutation is not the cause of the phenotype. We have started to explore whether differential gene expression patterns are associated with the instability phenotype, in order to shed light on its initiation and perpetuation. Using GM10115 human-hamster hybrid-derived chromosomally stable and radiation-induced unstable clones, gene expression patterns were analyzed using microarray analysis. Two methods were used to find differentially expressed genes, and all candidate genes identified by these methods were under-expressed relative to the chromosomally stable reference sample. Among this set differentially expressed genes identified were two candidates with a relationship to the ubiquitin/proteasome pathway. While follow-up gene expression analyses have confirmed the under-expression of these two genes in some of our chromosomally unstable clones, preliminary functional studies have been unable to demonstrate a link to instability. It is anticipated that as we apply this technology to the study of radiation-induced genomic instability, clues to its onset will be revealed, ultimately contributing to a greater understanding of the mechanisms of radiation carcinogenesis. 相似文献
8.
In V79 Chinese hamster cells, radiation-induced genomic instability results in a persistently increased frequency of micronuclei,
dicentric chromosomes and apoptosis and in decreased colony-forming ability. These manifestations of radiation-induced genomic
instability may be attributed to an increased rate of chromosome breakage events many generations after irradiation. This
chromosomal instability does not seem to be a property which has been inflicted on individual chromosomes at the time of irradiation.
Rather, it appears to be secondary to an increased level of non-specific clastogenic factors in the progeny of most if not
all irradiated cells. This conclusion is drawn from the observations presented here, that all the chromosomes in surviving
V79 cells are involved in the formation of dicentric chromosome aberrations 1 or 2 weeks after irradiation with about equal
probability if corrections are made for chromosome length.
Received: 5 March 1998 / Accepted in revised form: 1 July 1998 相似文献
10.
Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the "normal" physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P<0.0001, P=0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy gamma-rays) on day 9 relative to un-irradiated controls (P<0.05). Folic acid deficiency and gamma-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P=0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend<0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage. 相似文献
11.
Telomeres are complexes of repetitive DNA sequences and proteins constituting the ends of linear eukaryotic chromosomes. While these structures are thought to be associated with the nuclear matrix, they appear to be released from this matrix at the time when the cells exit from G(2) and enter M phase. Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. The 14-3-3sigma gene has been reported to be a checkpoint control gene, since it promotes G(2) arrest following DNA damage. Here we demonstrate that inactivation of this gene influences genome integrity and cell survival. Analyses of chromosomes at metaphase showed frequent losses of telomeric repeat sequences, enhanced frequencies of chromosome end-to-end associations, and terminal nonreciprocal translocations in 14-3-3sigma(-/-) cells. These phenotypes correlated with a reduction in the amount of G-strand overhangs at the telomeres and an altered nuclear matrix association of telomeres in these cells. Since the p53-mediated G(1) checkpoint is operative in these cells, the chromosomal aberrations observed occurred preferentially in G(2) after irradiation with gamma rays, corroborating the role of the 14-3-3sigma protein in G(2)/M progression. The results also indicate that even in untreated cycling cells, occasional chromosomal breaks or telomere-telomere fusions trigger a G(2) checkpoint arrest followed by repair of these aberrant chromosome structures before entering M phase. Since 14-3-3sigma(-/-) cells are defective in maintaining G(2) arrest, they enter M phase without repair of the aberrant chromosome structures and undergo cell death during mitosis. Thus, our studies provide evidence for the correlation among a dysfunctional G(2)/M checkpoint control, genomic instability, and loss of telomeres in mammalian cells. 相似文献
12.
Two forms of genetic instability have been described in colorectal cancer: microsatellite instability and chromosomal instability. Microsatellite instability results from mutations in mismatch repair genes; chromosomal instability is the hallmark of many colorectal cancers, although it is not completely understood at the molecular level. As truncations of the Adenomatous Polyposis Coli (APC) gene are found in most colorectal tumours, we thought that mutations in APC might be responsible for chromosomal instability. To test this hypothesis, we examined mouse embryonic stem (ES) cells homozygous for Min (multiple intestinal neoplasia) or Apc1638T alleles. Here we show that Apc mutant ES cells display extensive chromosome and spindle aberrations, providing genetic evidence for a role of APC in chromosome segregation. Consistent with this, APC accumulates at the kinetochore during mitosis. Apc mutant cells form mitotic spindles with an abundance of microtubules that inefficiently connect with kinetochores. This phenotype is recapitulated by the induced expression of a 253-amino-acid carboxy-terminal fragment of APC in microsatellite unstable colorectal cancer cells. We conclude that loss of APC sequences that lie C-terminal to the beta-catenin regulatory domain contributes to chromosomal instability in colorectal cancer. 相似文献
13.
Clusterin (CLU) plays numerous roles in mammalian cells after stress. A review of the recent literature strongly suggests potential roles for CLU proteins in low dose ionizing radiation (IR)-inducible adaptive responses, bystander effects, and delayed death and genomic instability. Its most striking and evident feature is the inducibility of the CLU promoter after low, as well as high, doses of IR. Two major forms of CLU, secreted (sCLU) and nuclear (nCLU), possess opposite functions in cellular responses to IR: sCLU is cytoprotective, whereas nCLU (a byproduct of alternative splicing) is a pro-death factor. Recent studies from our laboratory and others demonstrated that down-regulation of sCLU by specific siRNA increased cytotoxic responses to chemotherapy and IR. sCLU was induced after low non-toxic doses of IR (0.02-0.5 Gy) in human cultured cells and in mice in vivo. The low dose inducibility of this survival protein suggests a possible role for sCLU in radiation adaptive responses, characterized by increased cell radioresistance after exposure to low adapting IR doses. Although it is still unclear whether the adaptive response is beneficial or not to cells, survival of damaged cells after IR may lead to genomic instability in the descendants of surviving cells. Recent studies indicate a link between sCLU accumulation and cancer incidence, as well as aging, supporting involvement of the protein in the development of genomic instability. Secreted after IR, sCLU may also alter intracellular communication due to its ability to bind cell surface receptors, such as the TGF-beta receptors (types I and II). This interference with signaling pathways may contribute to IR-induced bystander effects. We hypothesize that activation of the TGF-beta signaling pathway, which often occurs after IR exposure, can in turn activate the CLU promoter. TGF-beta and IR-inducible de novo synthesized sCLU may then bind the TGF-beta receptors and suppress downstream growth arrest signaling. This complicated negative feedback regulation most certainly depends on the cellular microenvironment, but undoubtedly represents a potential link between IR-induced adaptive responses, genomic instability and bystander effects. Further elucidation of clusterin protein functions in IR responses are clearly warranted. 相似文献
16.
In the event of a radiation accident or attack, it will be imperative to quickly assess the amount of radiation exposure to accurately triage victims for appropriate care. RNA-based radiation dosimetry assays offer the potential to rapidly screen thousands of individuals in an efficient and cost-effective manner. However, prior to the development of these assays, it will be critical to identify those genes that will be most useful to delineate different radiation doses. Using global expression profiling, we examined expression changes in nonimmortalized T cells across a wide range of doses (0.15-12 Gy). Because many radiation responses are highly dependent on time, expression changes were examined at three different times (3, 8, and 24 h). Analyses identified 61, 512 and 1310 genes with significant linear dose-dependent expression changes at 3, 8 and 24 h, respectively. Using a stepwise regression procedure, a model was developed to estimate in vitro radiation exposures using the expression of three genes (CDKN1A, PSRC1 and TNFSF4) and validated in an independent test set with 86% accuracy. These findings suggest that RNA-based expression assays for a small subset of genes can be employed to develop clinical biodosimetry assays to be used in assessments of radiation exposure and toxicity. 相似文献
17.
Microarray technology can be used to assess simultaneously global changes in expression of mRNA or genomic DNA copy number among thousands of genes in different biological states. In many cases, it is desirable to determine if altered patterns of gene expression correlate with chromosomal abnormalities or assess expression of genes that are contiguous in the genome. We describe a method, differential gene locus mapping (DIGMAP), which aligns the known chromosomal location of a gene to its expression value deduced by microarray analysis. The method partitions microarray data into subsets by chromosomal location for each gene interrogated by an array. Microarray data in an individual subset can then be clustered by physical location of genes at a subchromosomal level based upon ordered alignment in genome sequence. A graphical display is generated by representing each genomic locus with a colored cell that quantitatively reflects its differential expression value. The clustered patterns can be viewed and compared based on their expression signatures as defined by differential values between control and experimental samples. In this study, DIGMAP was tested using previously published studies of breast cancer analyzed by comparative genomic hybridization (CGH) and prostate cancer gene expression profiles assessed by cDNA microarray experiments. Analysis of the breast cancer CGH data demonstrated the ability of DIGMAP to deduce gene amplifications and deletions. Application of the DIGMAP method to the prostate data revealed several carcinoma-related loci, including one at 16q13 with marked differential expression encompassing 19 known genes including 9 encoding metallothionein proteins. We conclude that DIGMAP is a powerful computational tool enabling the coupled analysis of microarray data with genome location. 相似文献
18.
Background Allergic rhinitis (AR) affects up to 80% of children with asthma and increases asthma severity. Thymic stromal lymphopoietin (TSLP) is a key mediator of allergic inflammation. The role of the TSLP gene ( TSLP) in the pathogenesis of AR has not been studied. Objective To test for associations between variants in TSLP, TSLP -related genes, and AR in children with asthma. Methods We genotyped 15 single nucleotide polymorphisms (SNPs) in TSLP, OX40L, IL7R, and RXRα in three independent cohorts: 592 asthmatic Costa Rican children and their parents, 422 nuclear families of North American children with asthma, and 239 Swedish children with asthma. We tested for associations between these SNPs and AR. As we previously reported sex-specific effects for TSLP, we performed overall and sex-stratified analyses. We additionally performed secondary analyses for gene-by-gene interactions. Results Across the three cohorts, the T allele of TSLP SNP rs1837253 was undertransmitted in boys with AR and asthma as compared to boys with asthma alone. The SNP was associated with reduced odds for AR (odds ratios ranging from 0.56 to 0.63, with corresponding Fisher's combined P value of 1.2 × 10 -4). Our findings were significant after accounting for multiple comparisons. SNPs in OX40L, IL7R, and RXRα were not consistently associated with AR in children with asthma. There were nominally significant interactions between gene pairs. Conclusions TSLP SNP rs1837253 is associated with reduced odds for AR in boys with asthma. Our findings support a role for TSLP in the pathogenesis of AR in children with asthma. 相似文献
19.
The aim of the study was to compare the spontaneous and ex vivo radiation-induced chromosomal damage in lymphocytes of untreated prostate cancer patients and age-matched healthy donors, and to evaluate the chromosomal damage, induced by radiotherapy, and its persistence. Blood samples from 102 prostate cancer patients were obtained before radiotherapy to investigate the excess acentric fragments and dicentric chromosomes. In addition, in a subgroup of ten patients, simple exchanges in chromosomes 2 and 4 were evaluated by fluorescent in situ hybridization (FISH), before the onset of therapy, in the middle and at the end of therapy, and 1 year later. Data were compared to blood samples from ten age-matched healthy donors. We found that spontaneous yields of acentric chromosome fragments and simple exchanges were significantly increased in lymphocytes of patients before onset of therapy, indicating chromosomal instability in these patients. Ex vivo radiation-induced aberrations were not significantly increased, indicating proficient repair of radiation-induced DNA double-strand breaks in lymphocytes of these patients. As expected, the yields of dicentric and acentric chromosomes, and the partial yields of simple exchanges, were increased after the onset of therapy. Surprisingly, yields after 1 year were comparable to those directly after radiotherapy, indicating persistence of chromosomal instability over this time. Our results indicate that prostate cancer patients are characterized by increased spontaneous chromosomal instability. This instability seems to result from defects other than a deficient repair of radiation-induced DNA double-strand breaks. Radiotherapy-induced chromosomal damage persists 1 year after treatment. 相似文献
|