首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have reported that laminin-10/11 strongly promotes migration of A549 human lung carcinoma cells by activating the alpha3beta1 integrin-dependent signaling pathway. To elucidate the mechanism involved, we investigated whether matrix metalloproteinases (MMPs) are involved in cell migration on laminin-10/11. Here, we demonstrate that laminin-10/11, but not fibronectin which does not greatly promote A549 cell movement, stimulated MMP-2 secretion approximately 3-fold. The cell migration-promoting activity of laminin-10/11 was down-regulated by an MMP inhibitor. In addition, cell motility was significantly increased when cells adhered to a mixture of fibronectin and laminin-10/11 with a concomitant decrease of focal contacts, compared with those adhering to fibronectin alone. The enhanced cell migration was partially suppressed by the MMP inhibitor. Furthermore, an anti-alpha3 integrin, but not an anti-alpha5 integrin, antibody induced the activated form of MMP-2. These data suggest that MMP-2 may play an important role in A549 cell migration on laminin-10/11 through an alpha3beta1 integrin-dependent pathway.  相似文献   

2.
Expression of integrin, which mediates cell-matrix interaction, is affected by several cytokines, in particular by transforming growth factor-beta (TGF-beta). However, it is unknown whether, in an opposite way, a specific integrin is involved in cytokine synthesis. We tested this hypothesis. Function-blocking anti-alpha 5 integrin (fibronectin receptor) antibody increased TGF-beta secretion in growth-arrested human mesangial cells (2.3-fold) compared with control IgG or anti-alpha v beta 3 integrin (receptor for several matrix proteins) antibody. It also increased the secretion of plasminogen activator inhibitor-1 (PAI-1), a protein associated with matrix increase, by 3.2-fold. The increase in PAI-1 secretion induced by anti-alpha 5 integrin antibody was not abrogated by anti-TGF-beta neutralizing antibody. These results indicate that function-blocking of anti-alpha 5 integrin stimulates TGF-beta as well as PAI-1 production, suggesting that alpha 5 integrin is involved in fibrotic process. Function-modulation of a specific integrin thus appears to play a role in glomerular remodeling.  相似文献   

3.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

4.
Soluble GTP-bound transglutaminase 2 (TG2) induces hypertrophic differentiation in chondrocyte cultures in a beta1 integrin-dependent fashion. beta1 integrin subfamily consists of 12 heterodimers with 12 different alpha subunits and a beta1 subunit. To identify the specific integrin heterodimer(s) responsible for this process, we specifically blocked individual beta1 integrins on the CH-8 immortalized human chondrocytes during hypertrophic differentiation. Blockade of alpha5beta1 inhibited matrix metalloproteinase 13 (MMP-13), type X collagen expression, alkaline phosphatase activity and matrix calcification by 30-50% associated with weak effects of anti-alpha3beta1 and -alpha4beta1. Anti-alpha1beta1, -alpha2beta1 and -alpha6beta1 had no effect. To examine whether the dominant effect of integrin alpha5beta1 was due to a direct interaction with TG2, we incubated the chondrocytic cells on plates coated with GTP-bound TG2. The immobilized GTP-bound TG2 induced hypertrophic differentiation to the same extent as the soluble GTP-bound TG2, which was also inhibited by anti-alpha5beta1. CH-8 cells grown on plates coated with GTP-bound TG2 demonstrated adherence associated with focal adhesion kinase phosphorylation. These properties were inhibited by anti-alpha5beta1. Furthermore, engagement of alpha5beta1 on CH-8 cells via anti-alpha5beta1 antibody did, in fact, induce differentiation. Although CH-8 cells adhered to GTP-free TG2 via integrin alpha5beta1, the cells failed to undergo hypertrophic differentiation. Thus, integrin alpha5beta1 is critical for the chondrocyte hypertrophic differentiation induced by GTP-bound TG2, and this induction is ligand dependent.  相似文献   

5.
During melanoma progression, migrating cells must cross human dermis, a type I collagen-rich tissue. We have show that MMP-1 and MMP-2 act in a cumulative manner in the in vitro invasion of a three-dimensional type I collagen matrix by melanoma cells. Two melanoma cell lines (M1Dor and M3Da) previously reported to secrete proMMP-2 in a direct relationship with their tumorigenic potential into nude mice were used (F. Capon et al., 1999, Clin. Exp. Metastasis 17, 463-469). The highly tumorigenic cell line (M3Da) displayed a five-fold faster migration rate in type I collagen matrix, compared to its lower tumorigenic counterpart (M1Dor). In parallel, activation of proMMP-2 was evidenced in M3Da- but not M1Dor-populated collagen lattices. Such enzyme activation was associated with a significant decrease in TIMP-2 and TIMP-1 production. Agents known to interfere with proMMP-2 activation, i.e., excess TIMP-2, furin convertase inhibitor, and alphavbeta3 blocking antibody, reduced by 30-40% the type I collagen invasive capacity of M3Da cells. By comparison, batimastat, a wide-spectrum MMP inhibitor, exhibited a more pronounced inhibitory effect (>70%). It suggested that other collagenases than MMP-2 could participate in type I collagen invasion. Collagenase-3 (MMP-13) was produced at low levels by melanoma cells whatever the cell culture conditions. In contrast, M3Da and M1Dor cells secreted collagenase-1 (MMP-1) following 48 h of culture on plastic dishes. Growing melanoma cells in type I collagen gel did not modify enzyme production, but induced proMMP-1 activation in M3Da but not M1Dor cell-populated lattices. Blocking the plasmin-mediated proMMP-1 activation by aprotinin inhibited type I collagen gel invasion by 30%. Since the combination of aprotinin and furin convertase inhibitor reduced collagen invasiveness by melanoma cells to a level comparable to that attained with batimastat, we conclude that both MMP-2 and MMP-1 are involved in such tissue invasion.  相似文献   

6.
Intestinal epithelial cells (IEC) are capable of responding to IL-1 stimulation by producing a variety of pro-inflammatory cytokines. Recently, we have found that binding of the alpha3beta1 integrin may have a regulatory effect on IL-1 responses and intracellular signaling by suppressing cytokine secretion, mRNA expression and the downstream intracellular signaling events from IKK to NF-kappaB activation. In this study, we extend these findings by showing that treatment of the Caco-2 epithelial cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression in the levels of IL-1 induced AP-1 binding activity in nuclear extracts. Furthermore, suppressed levels of IL-1 induced c-Jun N-terminal kinase (JNK) phosphorylation and kinase activity were seen with the antibody treated cells. Cells cultured on purified laminin-5, the ligand for the alpha3beta1 integrin, did not show significantly elevated levels of JNK phosphorylation after IL-1 stimulation while cells cultured on fibronectin yielded significantly elevated levels of IL-1 induced JNK phosphorylation. These results indicate that binding of the alpha3beta1 integrin results in a suppression in the activation of the IL-1 induced intracellular signaling pathway from JNK to AP-1. This novel regulatory effect may be a potentially important mechanism to regulate IL-1 mediated responses by IEC.  相似文献   

7.
Das S  Banerji A  Frei E  Chatterjee A 《Life sciences》2008,82(9-10):467-476
Interactions between tumour cells and the extracellular matrix (ECM) strongly influence tumour development, affecting cell survival, proliferation and migration. Many of these interactions are mediated through a family of cell surface receptors named integrins. Fibronectin and its integrin receptors play important roles in tumour development. The alpha5beta 1 integrin interacts with the central cell adhesive region of fibronectin and requires both the RGD and synergy sites for maximal binding. Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases. They are capable of digesting the different components of the ECM and basement membrane. The ECM gives structural support to cells and plays a central role in cell adhesion, differentiation, proliferation and migration. Binding of ECM to integrins modulates expression and activity of the different MMPs. Our experimental findings demonstrate that cultivation of human breast cancer cells, MCF-7, in serum free medium in the presence of fibronectin upregulates the activity of MMP-2 and MMP-9. Blocking of alpha5beta 1 integrin with anti-alpha5 monoclonal antibody inhibits the fibronectin-induced MMP activation response appreciably. This strongly indicates alpha5beta 1 mediated signalling events in activation of MMP-2 and MMP-9. Phosphorylation of FAK and PI-3 kinase and the nuclear translocation of ERK and NF-kappaB upon fibronectin binding demonstrate possible participation of the FAK/PI-3K/ERK signalling pathways in the regulation of MMP-2 activity.  相似文献   

8.
We report the effect of the stable expression of a 13 amino acid human fibronectin (FN) peptide (FN13) on the organization of the FN extracellular matrix (ECM) and of FN integrin receptors (FNRs), in relationship with the inhibition of cellular invasion, in three FN-ECM defective human tumor-derived cell lines: SK-Hep1C3, hepatoma, ACN, neuroblastoma, and SK-OV-3, ovary carcinoma. All these cell lines stably expressing the FN13 peptide, organized an FN-ECM, disorganized alpha v beta 1 integrins and inactivated the ILK pathway, with the loss of secretion of MMP-9. This was associated with the inhibition of cell invasion in Matrigel matrix only in SK-Hep1C3 and ACN, but not in SK-OV-3 cells. Analysis of the integrin receptors organization showed that the FN13 expressing cells SK-Hep1C3 and ACN organized alpha v beta 3 integrins, whereas SK-OV-3 organized alpha v beta 5 dimers. The functional block of alpha v beta 5 integrins, with an inactivating anti-alpha v beta 5 antibody, led to the induction of alpha v beta 3 integrins also in SK-OV-3 cells, and to the inhibition of cell invasion. These data show that in the human tumor cells studied FN13 inhibits the in vitro invasion through the dissociation of alpha v beta 1 dimers, leading to ILK pathway inactivation, only when the organization of alpha v beta 3 integrins is induced in the plasma membrane.  相似文献   

9.
Li G  Lubin FD  McGee DW 《Cellular immunology》2004,231(1-2):30-39
Intestinal epithelial cells (IECs) produce several potent cytokines in response to interleukin-1 (IL-1) and may play a role in the inflammatory response. Previously, we determined that treatment of the Caco-2 cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced cytokine secretion and mRNA levels, suggesting that the alpha3beta1 integrin may play a role in the regulation of IEC cytokine responses to IL-1. In this report, treatment of the Caco-2 cells with the anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced levels of NF-kappaB binding activity in nuclear extracts, as determined by EMSA, as well as phosphorylation and degradation of the inhibitor, I(kappa)B(alpha). The anti-integrin antibody treatment was also found to suppress I(kappa)B kinase (IKK) activity and IKK(beta) phosphorylation. Culture of the Caco-2 cells on purified laminin-5, the ligand for the alpha3beta1 integrin, also resulted in suppression of IL-1 induced phosphorylation of I(kappa)B(alpha) and IKK(beta). Together with our previous findings, these results suggest that alpha3beta1 integrin binding results in a suppression of the IL-1 signaling pathway leading to the activation of NF-(kappa)B and ultimately IEC cytokine responses. These studies define a novel regulatory mechanism which may be important in the control of IEC cytokine responses during inflammation.  相似文献   

10.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

11.
The constitutive secretion of latent TGF-beta by many cell types in culture suggests that extracellular mechanisms to control the activity of this potent cytokine are important in the pathogenesis of the diseases in which this cytokine may be involved, including fibrotic disorders. In this study, we focused on the alpha(v)beta3 integrin, which is recently demonstrated to function as an active receptor for latent TGF-beta1 through its interaction with latency-associated peptide-beta1, and investigated the involvement of this integrin in the pathogenesis of scleroderma. Scleroderma fibroblasts exhibited increased alpha(v)beta3 expression compared with normal fibroblasts in vivo and in vitro. In scleroderma fibroblasts, ERK pathway was constitutively activated and such abnormality induced the up-regulation of alpha(v)beta3. Transient overexpression of alpha(v)beta3 in normal fibroblasts induced the increase in the promoter activity of human alpha2(I) collagen gene and the decrease in that of human MMP-1 gene. These effects of alpha(v)beta3 were almost completely abolished by the treatment with anti-TGF-beta Ab or TGF-beta1 antisense oligonucleotide. Furthermore, the addition of anti-alpha(v)beta3) Ab reversed the expression of type I procollagen protein and MMP-1 protein, the promoter activity of human alpha2(I) collagen gene, and the myofibroblastic phenotype in scleroderma fibroblasts. These results suggest that the up-regulated expression of alpha(v)beta3 contributes to the establishment of autocrine TGF-beta loop in scleroderma fibroblasts, and this integrin is a potent target for the treatment of scleroderma.  相似文献   

12.
Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin alpha2, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.  相似文献   

13.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated as a physiological activator of progelatinase A (MMP-2). We previously reported that plasmin treatment of cells results in proMMP-2 activation and increased type IV collagen degradation. Here, we analyzed the role of MT1-MMP in plasmin activation of MMP-2 using HT-1080 cells transfected with MT1-MMP sense or antisense cDNA. Control, vector-transfected cells that expressed endogenous MT1-MMP, and antisense cDNA transfectants with very low levels of MT1-MMP did not activate proMMP-2. Conversely, cells transfected with sense MT1-MMP cDNA expressed high MT1-MMP levels and processed proMMP-2 to 68/66-kDa intermediate activation products. Control cells and MT1-MMP transfectants had much higher levels of cell-associated MMP-2 than antisense cDNA transfectants. Addition of plasmin(ogen) to control or MT1-MMP-transfected cells generated active, 62-kDa MMP-2, but was ineffective with antisense cDNA transfectants. The effect of plasmin(ogen) was prevented by inhibitors of plasmin, but not by metalloproteinase inhibitors, implicating plasmin as a mechanism for proMMP-2 activation independent of the activity of MT1-MMP or other MMPs. Plasmin-mediated activation of proMMP-2 did not result from processing of proMT1-MMP and did not correlate with alpha(v)beta(3) integrin or TIMP-2 levels. Thus, plasmin can activate proMMP-2 only in the presence of MT1-MMP; however, this process does not require the catalytic activity of MT1-MMP.  相似文献   

14.
alpha2beta1 integrin, CD36, and GP VI have all been implicated in platelet-collagen adhesive interactions. We have investigated the role of these glycoproteins on activation of the GP IIb-IIIa complex induced by platelet adhesion to type I fibrillar and monomeric collagen under static conditions. In the presence of Mg2+, platelet adhesion to fibrillar collagen induced activation of the GP IIb-IIIa complex and complete spreading. Anti-alpha2beta1 integrin and anti-GP VI antibodies inhibited the activation of the GP IIb-IIIa complex by about 40 and 50%, respectively, at 60 min although minimal inhibitory effects on adhesion were seen. Platelet spreading was markedly reduced by anti-alpha2beta1 integrin antibody. The combination of anti-alpha2beta1 integrin with anti-GP VI antibody completely inhibited both platelet adhesion and activation of the GP IIb-IIIa complex. Anti-CD36 antibody had no significant effects on platelet adhesion, spreading, and the activation of the GP IIb-IIIa complex at 60 min. Aspirin and the thromboxane A2 receptor antagonist SQ29548 inhibited activation of the GP IIb-IIIa complex about 30% but had minimal inhibitory effect on adhesion. In the absence of Mg2+, there was significant activation of the GP IIb-IIIa complex but minimal spreading was observed. Anti-GP VI antibody completely inhibited adhesion whereas no effect was observed with anti-alpha2beta1 integrin antibody. Anti-CD36 antibody partially inhibited both adhesion and the activation of the GP IIb-IIIa complex. Platelet adhesion to monomeric collagen, which requires Mg2+ and is exclusively mediated by alpha2beta1 integrin, resulted in partial activation of the GPIIb-IIIa complex and spreading. No significant effects were observed by anti-CD36 and anti-GP VI antibodies. These results suggest that both alpha2beta1 integrin and GP VI are involved in inside-out signaling leading to activation of the GP IIb-IIIa complex after platelet adhesion to collagen and generation of thromboxane A2 may further enhance expression of activated GP IIb-IIIa complexes.  相似文献   

15.
Our previous reports show that matrilysin [matrix metalloproteinase (MMP)-7] is overexpressed in epithelial ovarian cancer (EOC) and recombinant MMP-7 promotes EOC invasion in vitro. In the present study, we further evaluated the correlation of MMP-7 expression to EOC invasiveness and examined its role in lysophosphatidic acid (LPA)-induced invasion. By sense and antisense gene transfection in vitro, we show that overexpression of MMP-7 in all MMP-7 stably transfected DOV13 clones significantly enhanced their invasiveness, although MMP-7 antisense transfection caused a 91% decrease of MMP-7 expression (P < 0.01) and 87% decrease of invasion (P < 0.05) in geneticin (G418)-selected DOV13 clone P47-M7As-3 compared with vector-transfected control. As assessed by MMP-7 ELISA, LPA treatment at 10 to 80 micromol/L significantly stimulated the secretion of total MMP-7 in DOV13 conditioned medium (P < 0.01). In addition, LPA apparently induced the activation of MMP-7 in DOV13 cells as detected by gelatin zymography. In the antisense MMP-7-transfected DOV13 clone (P47-M7As-3), LPA-increased invasion was significantly decreased compared with vector control. Moreover, knocking down of MMP-7 by small interfering RNA also suppressed LPA-induced invasion in two EOC cell lines (DOV13 and R182). Altogether, our results show that MMP-7 expression is correlated with EOC invasiveness and LPA-induced MMP-7 secretion/activation may represent a new mechanism that facilitates ovarian cancer invasion besides the well-known induction of MT1-MMP-mediated proMMP-2 activation by LPA.  相似文献   

16.
Human endothelial cells are induced to form an anastomosing network of capillary tubes on a gel of collagen I in the presence of PMA. We show here that the addition of mAbs, AK7, or RMAC11 directed to the alpha chain of the major collagen receptor on endothelial cells, the integrin alpha 2 beta 1, enhance the number, length, and width of capillary tubes formed by endothelial cells derived from umbilical vein or neonatal foreskins. The anti-alpha 2 beta 1 antibodies maintained the endothelial cells in a rounded morphology and inhibited both their attachment to and proliferation on collagen but not on fibronectin, laminin, or gelatin matrices. Furthermore, RMAC11 promoted tube formation in collagen gels of increased density which in the absence of RMAC11 did not allow tube formation. Neither RMAC11 or AK7 enhanced capillary formation in the absence of PMA. Lumen structure and size were also altered by antibody RMAC11. In the absence of antibody the majority of lumina were formed intracellularly from single cells, but in the presence of RMAC11, multiple cells were involved and the lumen size was correspondingly increased. Endothelial cells were also induced to undergo capillary formation in fibrin gels after PMA stimulation. The addition of anti-alpha v beta 3 antibodies promoted tube formation in fibrin gels and inhibited EC adhesion to and proliferation on a fibrinogen matrix. The enhancement of capillary formation by the anti- integrin antibodies was matrix specific; that is, anti-alpha v beta 3 antibodies only enhanced tube formation on fibrin gels and not on collagen gels while anti-alpha v beta 1 antibodies only enhanced tubes on collagen and not on fibrin gels. Thus we postulate that changes in the adhesive nature of endothelial cells for their extracellular matrix can profoundly effect their function. Anti-integrin antibodies which inhibit cell-matrix interactions convert endothelial cells from a proliferative phenotype towards differentiation which results in enhanced capillary tube formation.  相似文献   

17.
Cancer metastasis involves tumor cells invading the surrounding tissue. Remodeling of tissue barriers depends on the ability of tumor cells to degrade the surrounding collagen matrix and then migrate through the matrix defects. Epidermal growth factor (EGF) has been shown to regulate tumor cell invasion through activation of matrix metalloproteinase-2 (MMP-2) in various tumor cell types. In the present study, we investigated the role of MMP-2 and the signaling pathway involved in EGF-promoted invasion by human pancreatic cancer cells PANC-1. Using specific inhibitors, we found that EGF stimulation of these tumor cells induced secretion and activation of the collagenase MMP-2, which was required for EGF-stimulated basement membrane degradation and cell invasion. Our results also indicate that signaling events downstream of EGF receptor involved PI3K- and Src-dependent activation of Rac1, which mediated the NADPH-generated reactive oxygen species responsible for MMP-2 secretion and activation.  相似文献   

18.
Dopaminergic neurons in the substantia nigra are particularly vulnerable, and their degeneration leads to Parkinson's disease. We have previously reported that matrix metalloproteinase-3 (MMP-3) activity is involved in dopaminergic neurodegeneration by multiple mechanisms and that this requires activation of MMP-3 from proMMP-3 by an intracellular serine protease. HtrA2/Omi is a mitochondrial serine protease that has been shown in non-dopaminergic cells to translocate into the cytosol where it triggers apoptosis. In the present study we sought to determine whether HtrA2/Omi might cause activation of MMP-3 in dopaminergic neuronal cells using CATH.a cell line. Mitochondrial stress induced by rotenone led to MMP-3 activation and HtrA2/Omi translocation into the cytosol. The MMP-3 activation involved HtrA2/Omi, because both pharmacological inhibition and siRNA-induced knockdown of HtrA2/Omi attenuated the activation induced by rotenone or MPP+. Overexpression of mature HtrA2/Omi, but not mutant HtrA2/Omi, resulted in MMP-3 activity increase and cell death. Addition of recombinant and catalytically active HtrA2/Omi to lysate of untreated cells led to activation of the endogenous MMP-3, and incubation of the HtrA2/Omi with recombinant proMMP-3 caused cleavage of proMMP-3 to a 48kD protein, corresponding to the active form, which was accompanied by an increase in MMP-3 activity. Taken together, the data indicate that HtrA2/Omi, which normally exists in the mitochondria, can cause MMP-3 activation in the cytosol under a cell stress condition, which can ultimately lead to demise of dopaminergic neuronal cells.  相似文献   

19.
In platelets, bidirectional signaling across integrin alpha(IIb)beta(3) regulates fibrinogen binding, cytoskeletal reorganization, cell aggregation, and spreading. Because these responses may be influenced by the clustering of alpha(IIb)beta(3) heterodimers into larger oligomers, we established two independent methods to detect integrin clustering and evaluate factors that regulate this process. In the first, weakly complementing beta-galactosidase mutants were fused to the C terminus of individual alpha(IIb) subunits, and the chimeras were stably expressed with beta(3) in Chinese hamster ovary cells. Clustering of alpha(IIb)beta(3) should bring the mutants into proximity and reconstitute beta-galactosidase activity. In the second method, alpha(IIb) was fused to either a green fluorescent protein (GFP) or Renilla luciferase and transiently expressed with beta(3). Here, integrin clustering should stimulate bioluminescence resonance energy transfer between a cell-permeable luciferase substrate and GFP. These methods successfully detected integrin clustering induced by anti-alpha(IIb)beta(3) antibodies. Significantly, they also detected clustering upon soluble fibrinogen binding to alpha(IIb)beta(3). In contrast, no clustering was observed following direct activation of alpha(IIb)beta(3) by MnCl(2) or an anti-alpha(IIb)beta(3)-activating antibody Fab in the absence of fibrinogen. Intracellular events also influenced alpha(IIb)beta(3) clustering. For example, a cell-permeable, bivalent FK506-binding protein (FKBP) ligand stimulated clustering when added to cells expressing an alpha(IIb)(FKBP)(2) chimera complexed with beta(3). Furthermore, alpha(IIb)beta(3) clustering occurred in the presence of latrunculin A or cytochalasin D, inhibitors of actin polymerization. These effects were enhanced by fibrinogen, suggesting that actin-regulated clustering modulates alpha(IIb)beta(3) interaction with ligands. These studies in living cells establish that alpha(IIb)beta(3) clustering is modulated by fibrinogen and actin dynamics. More broadly, they should facilitate investigations of the mechanisms and consequences of integrin clustering.  相似文献   

20.
We recently reported a computational method (CHAMP) for designing sequence-specific peptides that bind to the membrane-embedded portions of transmembrane proteins. We successfully applied this method to design membrane-spanning peptides targeting the transmembrane domains of the alpha IIb subunit of integrin alpha IIbbeta 3. Previously, we demonstrated that these CHAMP peptides bind specifically with reasonable affinity to isolated transmembrane helices of the targeted transmembrane region. These peptides also induced integrin alpha IIbbeta 3 activation due to disruption of the helix-helix interactions between the transmembrane domains of the alpha IIb and beta 3 subunits. In this paper, we show the direct interaction of the designed anti-alpha IIb CHAMP peptide with isolated full-length integrin alpha IIbbeta 3 in detergent micelles. Further, the behavior of the designed peptides in phospholipid bilayers is essentially identical to their behavior in detergent micelles. In particular, the peptides assume a membrane-spanning alpha-helical conformation that does not disrupt bilayer integrity. The activity and selectivity of the CHAMP peptides were further explored in platelets, comfirming that anti-alpha IIb activates wild-type alpha IIbbeta 3 in whole cells as a result of its disruption of the protein-protein interactions between the alpha and beta subunits in the transmembrane regions. These results demonstrate that CHAMP is a successful chemical biology approach that can provide specific tools for probing the transmembrane domains of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号