首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.
This Perspective is part of the “Where next?” Series.
Soon, we will enter an era when “the number of population genomes deposited in public databases will dwarf those from isolates and single cells” (Gene Tyson). Clearly, as all authors noted in the following, our focus will move from describing the composition of microbial communities to elucidating the principles that govern their assembly, dynamics, and functions. How will such principles be discovered? Elhanan Borenstein proposes that a systems biology–based approach, particularly the development of mathematical and computational models of the interactions between the specific community components, will be critical for understanding the function and dynamics of microbiomes. Evolutionary biologists Howard Ochman and Andrew Moeller want to decipher how microbial assemblies evolve but challenge us to also consider the role of microbial communities in organismal evolution, and they make the exciting prediction that microbes will be implicated in the evolution of eusociality and cooperation. Brett Finlay underscores the need for deciphering the mechanistic bases—particularly the chemical/metabolite signals—for interactions between members of microbial communities and their hosts. He emphasizes how this knowledge will enable creation of new tools to manipulate the microbiota, a key challenge for future investigation. Heidi Kong also encourages deciphering the mechanisms that underlie associations between particular skin surfaces and disorders and their respective microbiota. Jeffrey Gordon considers several intriguing opportunities as well as challenges that manipulation of the gut microbiota presents for improved human nutrition and health. Finally, Karen Nelson, Karim Dabbagh and Hamilton Smith suggest that using synthetic genomes to create novel microbes or even synthetic microbiomes offers a new way to engineer the microbiota. Overall, future microbiome research regarding the molecules and mechanisms mediating interactions between members of microbial communities and their hosts should lead to discovery of exciting new biology and transformative therapeutics.  相似文献   

3.
The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a “boot camp” in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students’ engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.This is part of the PLOS Computational Biology Education collection.  相似文献   

4.
Cilia are microtubule-based organelles with important functions in motility and sensation. They contribute to a broad spectrum of developmental disorders called ciliopathies and have recently been linked to common conditions such as cancers and congenital heart disease. There has been increasing interest in the biology of cilia and their contribution to disease over the past two decades. In 2013 we published a “Gold Standard” list of genes confirmed to be associated with cilia. This was published as part of the SYSCILIA consortium for systems biology study dissecting the contribution of cilia to human health and disease, and was named the Syscilia Gold Standard (SCGS). Since this publication, interest in cilia and understanding of their functions have continued to grow, and we now present an updated SCGS version 2. This includes an additional 383 genes, more than doubling the size of SCGSv1. We use this dataset to conduct a review of advances in understanding of cilia biology 2013– 2021 and offer perspectives on the future of cilia research. We hope that this continues to be a useful resource for the cilia community.  相似文献   

5.
6.
Microbes are constantly evolving. Laboratory studies of bacterial evolution increase our understanding of evolutionary dynamics, identify adaptive changes, and answer important questions that impact human health. During bacterial infections in humans, however, the evolutionary parameters acting on infecting populations are likely to be much more complex than those that can be tested in the laboratory. Nonetheless, human infections can be thought of as naturally occurring in vivo bacterial evolution experiments, which can teach us about antibiotic resistance, pathogenesis, and transmission. Here, we review recent advances in the study of within-host bacterial evolution during human infection and discuss practical considerations for conducting such studies. We focus on 2 possible outcomes for de novo adaptive mutations, which we have termed “adapt-and-live” and “adapt-and-die.” In the adapt-and-live scenario, a mutation is long lived, enabling its transmission on to other individuals, or the establishment of chronic infection. In the adapt-and-die scenario, a mutation is rapidly extinguished, either because it carries a substantial fitness cost, it arises within tissues that block transmission to new hosts, it is outcompeted by more fit clones, or the infection resolves. Adapt-and-die mutations can provide rich information about selection pressures in vivo, yet they can easily elude detection because they are short lived, may be more difficult to sample, or could be maladaptive in the long term. Understanding how bacteria adapt under each of these scenarios can reveal new insights about the basic biology of pathogenic microbes and could aid in the design of new translational approaches to combat bacterial infections.  相似文献   

7.
8.
Abstract

Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol–disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol–disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities.  相似文献   

9.
Post ‘omic’ era has resulted in the development of many primary, secondary and derived databases. Many analytical and visualization bioinformatics tools have been developed to manage and analyze the data available through large sequencing projects. Availability of heterogeneous databases and tools make it difficult for researchers to access information from varied sources and run different bioinformatics tools to get desired analysis done. Building integrated bioinformatics platforms is one of the most challenging tasks that bioinformatics community is facing. Integration of various databases, tools and algorithm is a challenging problem to deal with. This article describes the bioinformatics analysis workflow management systems that are developed in the area of gene sequence analysis and phylogeny. This article will be useful for biotechnologists, molecular biologists, computer scientists and statisticians engaged in computational biology and bioinformatics research.  相似文献   

10.
Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level.  相似文献   

11.
12.
Phosphorylation is one of the most dynamic and widespread post‐translational modifications regulating virtually every aspect of eukaryotic cell biology. Here, we assemble a dataset from 75 independent phosphoproteomic experiments performed in our laboratory using Saccharomyces cerevisiae. We report 30,902 phosphosites identified from cells cultured in a range of DNA damage conditions and/or arrested in distinct cell cycle stages. To generate a comprehensive resource for the budding yeast community, we aggregate our dataset with the Saccharomyces Genome Database and another recently published study, resulting in over 46,000 budding yeast phosphosites. With the goal of enhancing the identification of functional phosphorylation events, we perform computational positioning of phosphorylation sites on available 3D protein structures and systematically identify events predicted to regulate protein complex architecture. Results reveal hundreds of phosphorylation sites mapping to or near protein interaction interfaces, many of which result in steric or electrostatic “clashes” predicted to disrupt the interaction. With the advancement of Cryo‐EM and the increasing number of available structures, our approach should help drive the functional and spatial exploration of the phosphoproteome.  相似文献   

13.
Policymakers should treat DIY‐biology laboratories as legitimate parts of the scientific enterprise and pay attention to the role of community norms. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business, S&S: Ethics

DIY biology – very broadly construed as the practice of biological experiments outside of traditional research environments such as universities, research institutes or companies – has, during the past decade, gained much prominence. This increased attention has raised a number of questions about biosafety and biosecurity, both in the media and by policy makers who are concerned about safety and security lapses in “garage biology”. There are a number of challenges here though when it comes to policies to regulate DIY biology. For a start, the term itself escapes easy definition: synonyms or related terms abound, including garage biotechnology, bio‐hacking, self‐modification/grinding, citizen science, bio‐tinkering, bio‐punk, even transhumanism. Some accounts even use ‘DIY‐bio’ interchangeably with synthetic biology, even though these terms refer to different emerging trends in biology. Some of these terms are more charged than others but each carries its own connotations with regard to practice, norms and legality. As such, conversations about the risk, safety and regulation of DIY‐bio can be fraught.
Synonyms or related terms abound, including garage biotechnology, bio‐hacking, self‐modification/grinding, citizen science, bio‐tinkering, bio‐punk, even transhumanism.
Given the increasing policy discussions about DIY‐bio, it is crucial to consider prevailing practice thoughtfully, and accurately. Key questions that researchers, policy makers and the public need to contemplate include the following: “How do different DIY‐bio spaces exist within regulatory frameworks, and enact cultures of (bio)safety?”, “How are these influenced by norms and governance structures?”, “If something is unregulated, must it follow that it is unsafe?” and “What about the reverse: does regulatory oversight necessarily lead to safer practice?”.The DIY‐bio movement emerged from the convergence of two trends in science and technology. The first one is synthetic biology, which can broadly be defined as a conception of genetic engineering as systematic, modular and programmable. While engineering living organisms is obviously a complex endeavour, synthetic biology has sought to re‐frame it by treating genetic components as inherently modular pieces to be assembled, through rational design processes, into complex but predictable systems. This has prompted many “LEGO” metaphors and a widespread sense of democratisation, making genetic engineering accessible not only to trained geneticists, but also to anyone with an “engineering mindset”.The second, much older, trend stems from hacker‐ and makerspaces, which are – usually not‐for‐profit – community organisations that enable groups of enthusiasts to share expensive or technically complex infrastructure, such as 3D printers or woodworking tools, for their projects. These provide a model of community‐led initiatives based on the sharing of infrastructure, equipment and knowledge. Underpinning these two trends is an economic aspect. Many of the tools of synthetic biology – notably DNA sequencing and synthesis – have seen a dramatic drop in cost, and much of the necessary physical apparatus is available for purchase, often second‐hand, through auction sites.DIY‐bio labs are often set‐up under widely varying management schemes. While some present themselves as community outreach labs focusing on amateur users, others cater specifically to semi‐ or professional members with advanced degrees in the biosciences. Other such spaces act as incubators for biotech startups with an explicitly entrepreneurial culture. Membership agreements, IP arrangements, fees, access and the types of project that are encouraged in each of these spaces can have a profound effect on the science being done.  相似文献   

14.
“Big” molecules such as proteins and genes still continue to capture the imagination of most biologists, biochemists and bioinformaticians. “Small” molecules, on the other hand, are the molecules that most biologists, biochemists and bioinformaticians prefer to ignore. However, it is becoming increasingly apparent that small molecules such as amino acids, lipids and sugars play a far more important role in all aspects of disease etiology and disease treatment than we realized. This particular chapter focuses on an emerging field of bioinformatics called “chemical bioinformatics” – a discipline that has evolved to help address the blended chemical and molecular biological needs of toxicogenomics, pharmacogenomics, metabolomics and systems biology. In the following pages we will cover several topics related to chemical bioinformatics. First, a brief overview of some of the most important or useful chemical bioinformatic resources will be given. Second, a more detailed overview will be given on those particular resources that allow researchers to connect small molecules to diseases. This section will focus on describing a number of recently developed databases or knowledgebases that explicitly relate small molecules – either as the treatment, symptom or cause – to disease. Finally a short discussion will be provided on newly emerging software tools that exploit these databases as a means to discover new biomarkers or even new treatments for disease.

What to Learn in This Chapter

  • The meaning of chemical bioinformatics
  • Strengths and limitations of existing chemical bioinformatic databases
  • Using databases to learn about the cause and treatment of diseases
  • The Small Molecule Pathway Database (SMPDB)
  • The Human Metabolome Database (HMDB)
  • DrugBank
  • The Toxin and Toxin-Target Database (T3DB)
  • PolySearch and Metabolite Set Enrichment Analysis
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

15.
Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the PluxI promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of “hidden interactions” on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.  相似文献   

16.
17.
Coleus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding for color patterning using a quantitative color analysis framework. Despite impressive advances in high-throughput data collection and processing, complex color patterns remain challenging to extract from image datasets. Using a phenotyping approach called “ColourQuant,” we extract and analyze pigmentation patterns from one of the largest coleus breeding populations in the world. Working with this massive dataset, we can analyze quantitative relationships between maternal plants and their progeny, identify features that underlie breeder-selections, and collect and compare public input on trait preferences. This study is one of the most comprehensive explorations into complex color patterning in plant biology and provides insights and tools for exploring the color pallet of the plant kingdom.

Quantitative analysis of color patterning in a large coleus breeding population reveals color features that are associated with aesthetic value.  相似文献   

18.
Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.  相似文献   

19.
Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research—translating basic science results into new interventions—and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.

What to Learn in This Chapter

Text mining is an established field, but its application to translational bioinformatics is quite new and it presents myriad research opportunities. It is made difficult by the fact that natural (human) language, unlike computer language, is characterized at all levels by rampant ambiguity and variability. Important sub-tasks include gene name recognition, or finding mentions of gene names in text; gene normalization, or mapping mentions of genes in text to standard database identifiers; phenotype recognition, or finding mentions of phenotypes in text; and phenotype normalization, or mapping mentions of phenotypes to concepts in ontologies. Text mining for translational bioinformatics can necessitate dealing with two widely varying genres of text—published journal articles, and prose fields in electronic medical records. Research into the latter has been impeded for years by lack of public availability of data sets, but this has very recently changed and the field is poised for rapid advances. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

20.
The modern biomedical research and healthcare delivery domains have seen an unparalleled increase in the rate of innovation and novel technologies over the past several decades. Catalyzed by paradigm-shifting public and private programs focusing upon the formation and delivery of genomic and personalized medicine, the need for high-throughput and integrative approaches to the collection, management, and analysis of heterogeneous data sets has become imperative. This need is particularly pressing in the translational bioinformatics domain, where many fundamental research questions require the integration of large scale, multi-dimensional clinical phenotype and bio-molecular data sets. Modern biomedical informatics theory and practice has demonstrated the distinct benefits associated with the use of knowledge-based systems in such contexts. A knowledge-based system can be defined as an intelligent agent that employs a computationally tractable knowledge base or repository in order to reason upon data in a targeted domain and reproduce expert performance relative to such reasoning operations. The ultimate goal of the design and use of such agents is to increase the reproducibility, scalability, and accessibility of complex reasoning tasks. Examples of the application of knowledge-based systems in biomedicine span a broad spectrum, from the execution of clinical decision support, to epidemiologic surveillance of public data sets for the purposes of detecting emerging infectious diseases, to the discovery of novel hypotheses in large-scale research data sets. In this chapter, we will review the basic theoretical frameworks that define core knowledge types and reasoning operations with particular emphasis on the applicability of such conceptual models within the biomedical domain, and then go on to introduce a number of prototypical data integration requirements and patterns relevant to the conduct of translational bioinformatics that can be addressed via the design and use of knowledge-based systems.

What to Learn in This Chapter

  • Understand basic knowledge types and structures that can be applied to biomedical and translational science;
  • Gain familiarity with the knowledge engineering cycle, tools and methods that may be used throughout that cycle, and the resulting classes of knowledge products generated via such processes;
  • An understanding of the basic methods and techniques that can be used to employ knowledge products in order to integrate and reason upon heterogeneous and multi-dimensional data sets; and
  • Become conversant in the open research questions/areas related to the ability to develop and apply knowledge collections in the translational bioinformatics domain.
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号