首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Both professional and non-professional phagocytes [1] participate in clearing the massive numbers of cells that undergo apoptosis during animal development [2], but it is not known how they divide this task. Using time-lapse recordings of cells in culture, we show that professional phagocytes (brain macrophages or microglia) are highly motile, ingest apoptotic cells immediately, and digest them quickly. Non-professionals such as BHK and lens epithelial cells are sessile, often recognize apoptotic cells as soon as they die by showing characteristic palpating movements, but delay ingestion until several hours later. By pre-ageing apoptotic cells, we show that this delay is because the apoptotic cells must undergo further changes before non-professionals can ingest them. The difference was also apparent in vivo, using immunofluorescence and electron microscopy of the developing central nervous system. This arrangement favours prompt clearance by professionals if present in adequate numbers; if they are scarce, however, non-professional bystanders will reluctantly clear the apoptotic cells.  相似文献   

3.
MCF-7 cells undergo autophagic death upon tamoxifen treatment. Plated on non-adhesive substratum these cells died by anoikis while inducing autophagy as revealed by monodansylcadaverine staining, elevated light-chain-3 expression and electron microscopy. Both de novo and anoikis-derived autophagic dying cells were engulfed by human macrophages and MCF-7 cells. Inhibition of autophagy by 3-methyladenine abolished engulfment of cells dying through de novo autophagy, but not those dying through anoikis. Blocking exposure of phosphatidylserine (PS) on both dying cell types inhibited phagocytosis by MCF-7 but not by macrophages. Gene expression profiling showed that though both types of phagocytes expressed full repertoire of the PS recognition and signaling pathway, macrophages could evolve during engulfment of de novo autophagic cells the potential of calreticulin-mediated processes as well. Our data suggest that cells dying through autophagy and those committing anoikis with autophagy may engage in overlapping but distinct sets of clearance mechanisms in professional and non-professional phagocytes.  相似文献   

4.
5.
6.
7.
8.
A key aspect of Mycobacterium tuberculosis pathogenesis is the ability of the bacteria to survive within the host macrophage. A phagosome containing an IgG-coated bead matures into a lysosomal compartment as evidenced by a decrease in pH and an increased acquisition of hydrolytic enzymes. In contrast, when M. tuberculosis is phagocytosed, the maturation of the bacteria-containing phagosome is arrested, and the bacterium resides within a vacuole that retains characteristics of early endosomal compartments. M. tuberculosis-containing phagosomes are delayed in the recruitment of the early endosome autoantigen EEA1. Acquisition of EEA1 is dependent on the presence of phosphatidylinositol-3-phosphate (PI-3-P) generated by the kinase Vps34. We tested the hypothesis that delayed recruitment of EEA1 was due to altered kinetics of PI-3-P accumulation at the phagosomal membrane. Biochemical analysis of the phosphatidylinositol phosphates on M. tuberculosis-containing phagosomes revealed that PI-3-P acquisition was markedly retarded and reduced in comparison to IgG bead-containing phagosomes. Given the role these lipids play in the regulation of phagosome maturation these findings have implications with respect to the mechanisms behind the arrest of phagosome maturation.  相似文献   

9.
The natural hosts of the bacterial pathogen Legionella pneumophila are amoebae and protozoa. In these hosts, as in human macrophages, the pathogen enters the cell through phagocytosis, then rapidly modifies the phagosome to create a compartment that supports its replication. We have examined L. pneumophila entry and behaviour during early stages of the infection of Dictyostelium discoideum amoebae. Bacteria were labelled with a red fluorescent marker, and selected proteins and organelles in the host were labelled with GFP, allowing the dynamics and interactions of L. pneumophila -containing phagosomes to be tracked in living cells. These studies demonstrated that entry of L. pneumophila is an actin-mediated process, that the actin-binding protein coronin surrounds the nascent phagosome but dissociates immediately after internalization, that ER membrane is not incorporated into a phagosome during uptake, that the newly internalized phagosome is rapidly transported about the cell on microtubules, that association of ER markers with the phagosome occurs in two steps that correlate with distinct changes in phagosome movement, and that the vacuolar H(+)-ATPase does not associate with mature replication vacuoles. These studies have clarified certain aspects of the infection process and provided new insights into the dynamic interactions between the pathogen and its host.  相似文献   

10.
Actin polymerization can be induced in Dictyostelium by compressing the cells to bring phagosomes filled with large particles into contact with the plasma membrane. Asymmetric actin assembly results in rocketing movement of the phagosomes. We show that the compression-induced assembly of actin at the cytoplasmic face of the plasma membrane involves the Arp2/3 complex. We also identify two other proteins associated with the mechanically induced actin assembly. The class I myosin MyoB accumulates at the plasma membrane-phagosome interface early during the initiation of the response, and coronin is recruited as the actin filaments are disassembling. The forces generated by rocketing phagosomes are sufficient to push the entire microtubule apparatus forward and to dislocate the nucleus.  相似文献   

11.
Echinoid phagocytes in vitro   总被引:2,自引:0,他引:2  
A method is described for obtaining pure monolayers of phagocytes from the sea urchin Strongylocentrotus droebachiensis in vitro. The coelomic fluid contains four types of cells. About 67% of the cells are phagocytes, the rest is comprised of the red and white morula cells and the vibratile cells. The different cell types could be separated by centrifugation on a discontinuous gradient of sodium metrizoate. Release of granula from the vibratile cells was found to be responsible for rapid and extensive clotting of the coelomic fluid immediately after its removal from the animal. Clotting was prevented by adding a mixture of 50 mM mercaptoethanol, 3 mM caffeine and 2 mM TAME (p-tosyl- -arginine methyl ester) to the coelomic fluid. The phagocytes were isolated from other cell types by their attachment to glass, and were grown at 10 °C in a simple peptone-sea water medium. The phagocytes are very motile cells and spread rapidly on glass, accompanied by a complete change of their morphology to flattened cells with peripheral ruffling. After few hours in vitro the cells fuse to form monolayer-syncytia, and later still cell clusters and free floating balls of cells are formed. During a culture period of 10 days there was no change in the DNA content per culture, while a small increase in protein was found.  相似文献   

12.
Cell suspension cultures of Muscat de Frontignan grapes Vitis vinifera L. are able to convert citral (a mixture of neral and geranial) into the corresponding monoterpenic alcohols, nerol and geraniol. The geraniol formed is esterified into geranyl acetate. Bioconversion of nerol or geraniol added alone to the cell suspension was also studied. Interconversions between these different monoterpenic compounds are described and discussed.  相似文献   

13.
14.
15.
16.
17.
Summary The action of ethidium bromide and berenil on the mitochondrial genome of Saccharomyces cerevisiae has been compared in three types of study: (i) early kinetics (up to 4 h) of petite induction by the drugs in the presence or absence of sodium dodecyl sulphate; (ii) genetic consequences of long-term (8 cell generations) exposure to the drugs; (iii) inhibition of mitochondrial DNA replication, both in whole cells and in isolated mitochondria.The results have been interpreted as follows. Firstly, the early events in petite induction differ markedly for the two drugs, as indicated by differences in the short-term kinetics. After some stage a common pathway is apparently followed because the composition of the population of petite cells induced after long-term exposure are very similar for both ethidium bromide and berenil. Secondly, both drugs probably act at the same site to inhibit mitochondrial DNA replication, in view of the fact that a petite strain known to be resistant to ethidium bromide inhibition of mitochondrial DNA replication was found to have simultaneously acquired resistance to berenil. From consideration of the drug concentrations needed to inhibit mitochondrial DNA replication in vivo and in vitro it is suggested that in vivo permeability barriers impede the access of ethidium bromide to the site of inhibition of mitochondrial DNA replication, whilst access of berenil to this site is facilitated. The site at which the drugs act to inhibit mitochondrial DNA replication may be different from the site(s) involved in early petite induction. Binding of the drugs at the latter site(s) is considered to initiate a series of events leading to the fragmentation of yeast mitochondrial DNA and petite induction.  相似文献   

18.
Phagocytosis by polymorphonuclear leukocytes (PMN) is accompanied by specific morphological and metabolic events which may result in the killing of internalized micro-organism. Hydrogen peroxide is produced in increased amounts during phagocytosis (17) and in combination with myeloperoxidase and halide ions constitute a potent, microbicidal mechanism (8,9,11). There can be direct iodination of micro-organisms (10), or alternatively, other intermediate reaction products, i.e. chloramines and aldehydes (21), can exert a microbicidal effect. The H2O2-peroxidase-halide system is presumed to operate within the phagocytic vacuole (12,18). Myeloperoxidase, present in the primary granules of PMN, enters the phagocytic vacuole during degranulation (1,4,7), and halide ions are probably derived from the extracellular medium or are present in the PMN (see 11, 18). For the operation of this system in intact cells, the presence of H2O2 in the phagocytic vacuole is necessary, and indeed this has been suggested by the work of several investigators (12, 18, 21). In the present investigation, the diaminobenzidine reaction of Graham and Karnovsky (5), modified to utilize endogenous myeloperoxidase and hydrogen peroxide, has been applied to actively phagocytizing PMN to demonstrate cytochemically the presence of H2O2 in the phagocytic vacuole.  相似文献   

19.
Biogenesis of mitochondria   总被引:6,自引:0,他引:6  
  相似文献   

20.
The antibiotic streptimidone is formed biogenetically from seven malonate units. One of them undergoes double decarboxylation, another one is incorporated intact. Both methyl groups are of methionine origin. Degradation procedures using14C-labelled substrates are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号