首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early ontogenetic adaptations reflect the evolutionary history of a species. To understand the evolution of the deep-sea fauna and its adaptation to high pressure, it is important to know the effects of pressure on their shallow-water relatives. In this study we analyse the temperature and pressure tolerances of early life-history stages of the shallow-water species Mytilus edulis. This species expresses a close phylogenetic relationship with hydrothermal-vent mussels of the subfamily Bathymodiolinae. Tolerances to pressure and temperature are defined in terms of fertilization success and embryo developmental rates in laboratory-based experiments. In M. edulis, successful fertilization under pressure is possible up to 500 atm (50.66 MPa), at 10, 15 and 20 degrees C. A slower embryonic development is observed with decreasing temperature and with increasing pressure; principally, pressure narrows the physiological tolerance window in different ontogenetic stages of M. edulis, and slows down metabolism. This study provides important clues on possible evolutionary pathways of hydrothermal vent and cold-seep bivalve species and their shallow-water relatives. Evolution and speciation patterns of species derive mostly from their ability to adapt to variable environmental conditions, within environmental constraints, which promote morphological and genetic variability, often differently for each life-history stage. The present results support the view that a direct colonization of deep-water hydrothermal vent environments by a cold eurythermal shallow-water ancestor is indeed a possible scenario for the Mytilinae, challenging previous hypothesis of a wood/bone to seep/vent colonization pathway.  相似文献   

2.
Hydrothermal vents represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. Vents are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water vents have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water vents off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant vent fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the vent, and continuing for a distance of 2000 m, indicating that the vent fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of vent fluid were influencing the associated fauna. Only the vent crabs of Kueishan Island may have an obligated relationship with vents and inhabit the vent mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments.  相似文献   

3.
长白山北坡土壤动物群落物种共有度的海拔梯度变化   总被引:17,自引:2,他引:17  
群落间各生活型土壤动物科及所有土壤动物科的共有度,一定程度上反映了群落间的相关性及沿环境梯度的物种替代关系。应用梯度格局法在长白山北坡海拔550~2650m地段,每隔100m海拔高度设置一块样地,共计22块样地,并应用Jaccard指数,对各海拔不同土壤动物群落间物种共有度的海拔梯度变化进行了分析。结果表明,不同海拔土壤动物群落间物种的共有度,无论以哪一生活层的土壤动物科来表达,基本都以与其最相邻的群落间为最高,群落间物种共有度峰值与谷点反映了群落类型随海拔具有间断性变化。线虫、甲螨、弹尾等各生活型土壤动物的共有度以及所有土壤动物科的共有度,均随着海拔差的增加呈下降趋势,但并非与植被情况完全吻合。  相似文献   

4.
Studies focusing on communities of helminths from Brazilian lizards are increasing, but there are many blanks in the knowledge of parasitic fauna of wild fauna. This lack of knowledge hampers understanding of ecological and parasitological aspects of involved species. Moreover, the majority of research has focused on parasitic fauna of lizards from families Tropiduridae and Scincidae. Only a few studies have looked at lizards from the family Leiosauridae, including some species of Enyalius. This study presents data on the gastrointestinal parasite fauna of Enyalius perditus and their relationships with ecological aspects of hosts in a disturbed Atlantic rainforest area in the state of Minas Gerais, south-eastern Brazil. Two nematode species, Oswaldocruzia burseyi [(Molineidae) and Strongyluris oscari (Heterakidae) were found. Nematode species showed an aggregated distribution in this host population, with O. burseyi being more aggregated than S. oscari. The present study extends the range of occurrence of O. burseyi to the Brazilian continental area.  相似文献   

5.
Deep‐sea hydrothermal vents provide ephemeral habitats for animal communities that depend on chemosynthetic primary production. Sporadic volcanic and tectonic events destroy local vent fields and create new ones. Ongoing dispersal and cycles of extirpation and colonization affect the levels and distribution of genetic diversity in vent metapopulations. Several species exhibit evidence for stepping‐stone dispersal along relatively linear, oceanic, ridge axes. Other species exhibit very high rates of gene flow, although natural barriers associated with variation in depth, deep‐ocean currents, and lateral offsets of ridge axes often subdivide populations. Various degrees of impedance to dispersal across such boundaries are products of species‐specific life histories and behaviours. Though unrelated to the size of a species range, levels of genetic diversity appear to correspond with the number of active vent localities that a species occupies within its range. Pioneer species that rapidly colonize nascent vents tend to be less subdivided and more diverse genetically than species that are slow to establish colonies at vents. Understanding the diversity and connectivity of vent metapopulations provides essential information for designing deep‐sea preserves in regions that are under consideration for submarine mining of precious metals.  相似文献   

6.
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution.  相似文献   

7.
It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or “species” of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or “species” populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes.  相似文献   

8.
Ecological distribution of four co-occurring Mediterranean heath species   总被引:1,自引:0,他引:1  
Erica australis, E. scoparia, E. arborea and Calluna vulgaris are the most abundant heath species on acid, sandstone-derived soils of the Strait of Gibraltar region (southern Spain and northern Morocco). Despite their apparently similar ecological requirements, these four species are somewhat ecologically segregated. Erica australis is abundant only on poor, shallow soils, with a high content in soluble aluminium, generally on mountain ridges and summits. Erica scoparia becomes dominant on deeper sandstone soils with lower aluminium. Calluna vulgaris coexists with these Erica species in communities under low or no tree cover. In the Spanish side of the Strait (Algeciras), Erica arborea tends to be relegated to communities under moderate to dense tree cover, whereas this species is more abundant and widespread in the Moroccan side (Tangier). Tolerance to extreme physical conditions - high aluminium and dense tree cover - and interspecific competition seem to explain the ecological distribution of these four heath species in the Strait of Gibraltar region. The more fragmented pattern of sandstone patches and higher disturbance levels in Tangier might account for the differences in the patterns of ecological distribution of these four heath species between both sides of the Strait of Gibraltar.  相似文献   

9.
By their very nature oceanic island ecosystems offer great opportunities for the study of evolution and have for a long time been recognized as natural laboratories for studying evolution owing to their discrete geographical nature and diversity of species and habitats. The development of molecular genetic methods for phylogenetic reconstruction has been a significant advance for evolutionary biologists, providing a tool for answering questions about the diversity among the flora and fauna on such islands. These questions relate to both the origin and causes of species diversity both within an archipelago and on individual islands. Within a phylogenetic framework one can answer fundamental questions such as whether ecologically and/or morphologically similar species on different islands are the result of island colonization or convergent evolution. Testing hypotheses about ages of the individual species groups or entire community assemblages is also possible within a phylogenetic framework. Evolutionary biologists and ecologists are increasingly turning to molecular phylogenetics for studying oceanic island plant and animal communities and it is important to review what has been attempted and achieved so far, with some cautionary notes about interpreting phylogeographical pattern on oceanic islands.  相似文献   

10.
Aim Deep‐sea hydrothermal vents have now been reported along all active mid‐ocean ridges and back‐arc basins, but the boundaries of biogeographic entities remain questionable owing to methodological issues. Here we examine biogeographic patterns of the vent fauna along the East Pacific Rise (EPR) and determine the relative roles of regional and local factors on the distribution of biodiversity associated with mussel beds along a poorly explored zone, the southern EPR (SEPR). Location East Pacific Rise. Methods A species list of macrobenthic invertebrates along the EPR was compiled from the literature and supplemented with data recovered during the French research cruise BIOSPEEDO carried out in 2004 along the SEPR. Biogeographic patterns were assessed by combining the identification of morphological species with a molecular barcoding approach. A multivariate regression tree (MRT) analysis was performed to identify any geographic breaks, and an empirical distribution of species richness was compared with predictions provided by a mid‐domain effect model. Macrofaunal community structure associated with mussel beds along the SEPR was analysed in relation to environmental factors using cluster and canonical redundancy analyses. Results Sequencing of the cytochrome c oxidase subunit I gene revealed the occurrence of several cryptic species complexes along the EPR, with the equator separating the southern and northern clades. Furthermore, during the BIOSPEEDO cruise at least 10 still unnamed species were collected between 7°25′ S and 21°33′ S. The shift in community structure identified by MRT analysis was located south of 17°34′ S or south of 13°59′ S, depending on the data used, suggesting that the southern part of the SEPR (17°25′–21°33′ S) constitutes a biogeographic transition zone in the vent fauna along the EPR. At a regional scale, latitude combined with the type of venting was significantly correlated with the community structure associated with mussel beds. Main conclusions Together, the molecular data, in situ observations, and the distribution of species suggest that the high diversity of vent fauna species presently observed between 17°25′ S and 21°33′ S is probably a result of the overlap of several distinct biogeographic provinces. We argue that this area thus constitutes a biogeographic vent fauna transition zone along the EPR.  相似文献   

11.
The characterization of evolutionary and biogeographical patterns is of fundamental importance to identify factors driving biodiversity. Due to their widespread but discontinuous distribution, deep‐sea hydrothermal vent barnacles represent an excellent model for testing biogeographical hypotheses regarding the origin, dispersal and diversity of modern vent fauna. Here, we characterize the global genetic diversity of vent barnacles to infer their time of radiation, place of origin, mode of dispersal and diversification. Our approach was to target a suite of multiple loci in samples representing seven of the eight described genera. We also performed restriction‐site associated DNA sequencing on individuals from each species. Phylogenetic inferences and topology hypothesis tests indicate that vent barnacles have colonized deep‐sea hydrothermal vents at least twice in history. Consistent with preliminary estimates, we find a likely radiation of barnacles in vent ecosystems during the Cenozoic. Our analyses suggest that the western Pacific was the place of origin of the major vent barnacle lineage, followed by circumglobal colonization eastwards through the Southern Hemisphere during the Neogene. The inferred time of radiation rejects the classic hypotheses of antiquity of vent taxa. The timing and the mode of origin, radiation and dispersal are consistent with recent inferences made for other deep‐sea taxa, including nonvent species, and are correlated with the occurrence of major geological events and mass extinctions. Thus, we suggest that the geological processes and dispersal mechanisms discussed here can explain the current distribution patterns of many other marine taxa and have played an important role shaping deep‐sea faunal diversity. These results also constitute the critical baseline data with which to assess potential effects of anthropogenic disturbances on deep‐sea ecosystems.  相似文献   

12.
Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents.  相似文献   

13.
Synopsis All living species occupy an ecological niche, and are positioned within a trophic hierarchy. Extinct organisms presumably held similar behavioral and coevolutionary characteristics in the past, and were susceptible to the same kinds of natural ecological pressures operating today. Paleoecological investigations are limited by the incompleteness of the fossil record, and particularly by a lack of behavioral data that are so fundamental to ecological studies of living communities and habitats. Opportunities to examine the coevolutionary structure of ancient communities from empirical data are extremely rare. One such opportunity is provided by the Lower Cretaceous Santana Formation of north-eastern Brazil, a series of richly fossiliferous strata approximately 110 million years old. Many fossil fishes from the Santana Formation contain identifiable prey, including decapod crustaceans and fishes. A trophic hierarchy of these organisms is reconstructed here, and their ecological relationships are discussed. Comparison is made with a similar fish fauna from the Upper Jurassic Solnhofen Limestone of Germany. Low-level, intermediate and high-level predators are identified in each fauna. Predator-prey relationships in the Santana fauna are strongly hierarchical, and are more focussed at the intermediate predator level than in Solnhofen. Comparison with a model of predator-prey relationships between fishes and benthic fauna of the Baltic Sea (which like the Araripe Basin represents a semi-enclosed environment) suggests that heavy predation on teleosts such asRhacolepis, occupying an intermediate trophic level, may have permitted benthic decapods to proliferate and exclude other benthic organisms. Less intense predation on fishes at the intermediate trophic level would allow their numbers to increase, thereby increasing the intensity of predation on the benthos at the base of the trophic hierarchy.  相似文献   

14.
Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.  相似文献   

15.
Underpinnings of the distribution of allopolyploid species (hybrids with duplicated genome) along spatial and ecological gradients are elusive. As allopolyploid speciation combines the range of genetic and ecological characteristics of divergent diploids, allopolyploids initially show their additivity and are predicted to evolve differentiated ecological niches to establish in face of their competition. Here, we use four diploid wild wheats that differentially combined into four independent allopolyploid species to test for such additivity and assess the impact of ecological constraints on species ranges. Divergent genetic variation from diploids being fixed in heterozygote allopolyploids supports their genetic additivity. Spatial integration of comparative phylogeography and modelling of climatic niches supports ecological additivity of locally adapted diploid progenitors into allopolyploid species which subsequently colonised wide ranges. Allopolyploids fill suitable range to a larger extent than diploids and conservative evolution following the combination of divergent species appears to support their expansion under environmental changes.  相似文献   

16.
Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000m, with the middle slope sites either grouped with those deeper than 2000m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as “stepping stones” for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further explored to more fully test this hypothesis.  相似文献   

17.
There are currently few predictions about when evolutionary processes are likely to play an important role in structuring community features. Determining predictors that indicate when evolution is expected to impact ecological processes in natural landscapes can help researchers identify eco-evolutionary ‘hotspots', where eco-evolutionary interactions are more likely to occur. Using data collected from a survey in freshwater cladoceran communities, landscape population genetic data and phenotypic trait data measured in a common garden, we applied a Bayesian linear model to assess whether the impact of local trait evolution in the keystone species Daphnia magna on cladoceran community trait values could be predicted by population genetic properties (within-population genetic diversity, genetic distance among populations), ecological properties (Simpson's diversity, phenotypic divergence) or environmental divergence. We found that the impact of local trait evolution varied among communities. Moreover, community diversity and phenotypic divergence were found to be better predictors of the contribution of evolution to community trait values than environmental features or genetic properties of the evolving species. Our results thus indicate the importance of ecological context for the impact of evolution on community features. Our study also demonstrates one way to detect signatures of eco-evolutionary interactions in communities inhabiting heterogeneous landscapes using survey data of contemporary ecological and evolutionary structure.  相似文献   

18.
Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.  相似文献   

19.
The fauna of dynamic riverine landscapes   总被引:13,自引:2,他引:13  
1.  Riverine landscapes are heterogeneous in space (complex mosaic of habitat types) and time (expansion and contraction cycles, landscape legacies). They are inhabited by a diverse and abundant fauna of aquatic, terrestrial and amphibious species.
2.  Faunal distribution patterns are determined by interactive processes that reflect the landscape mosaic and complex environmental gradients. The life cycles of many riverine species rely upon a shifting landscape mosaic and other species have become adapted to exploit the characteristically high turn-over of habitats.
3.  The complex landscape structure provides a diversity of habitats that sustains various successional stages of faunal assemblages. A dynamic riverine landscape sustains biodiversity by providing a variety of refugia and through ecological feedbacks from the organisms themselves (ecosystem engineering).
4.  The migration of many species, aquatic and terrestrial, is tightly coupled with the temporal and spatial dynamics of the shifting landscape mosaic. Alternation of landscape use by terrestrial and aquatic fauna corresponds to the rise and fall of the flood. Complex ecological processes inherent to intact riverine landscapes are reflected in their biodiversity, with important implications for the restoration and management of river corridors.  相似文献   

20.
The well-documented Floridian Gulf/Atlantic marine genetic disjunction provides an influential example of presumed vicariant cladogenesis along a continental coastline for major elements of a diverse nearshore fauna. However, it is unclear if this disjunction represents a local anomaly for regionally distributed morphospecies, or if it is merely one of many such cryptic phylogenetic splits that underlay their assumed genetic cohesiveness. We aimed to place the previously characterized scorched mussel Gulf/Atlantic genetic disjunction into a regional phylogenetic perspective by incorporating genotypes of nominal conspecifics sampled throughout the Caribbean Basin as well as those of eastern Pacific potential geminate species. Our results show it to be one of multiple latent regional genetic disjunctions, involving five cryptic Caribbean species, that appear to be the product of a long history of regional cladogenesis. Disjunctions involving three stem lineages clearly predate formation of the Isthmus of Panama and of the Caribbean Sea, although four of the five cryptic species have within-basin sister relationships. Surprisingly, the Atlantic clade was also found to be widespread in the southern Caribbean, and ancestral demography calculations through time for Atlantic coast-specific genotypes are consistent with a northward range extension after the last glacial maximum. Our new data seriously undermine the hypothesis of a Floridian vicariant genesis and imply that the scorched mussel Gulf/Atlantic disjunction represents a case of geographic and temporal pseudocongruence. All five Caribbean Basin cryptic species exhibited an intriguing pattern of predominantly allopatric distribution characterized by distinct geographic areas of ecological dominance, often adjoining those of sister taxa. This pattern of distribution is consistent with allopatric speciation origins, coupled with restricted postspeciation range extensions. Several lines of indirect evidence favor the hypothesis that the predominantly allopatric distributions are maintained over evolutionary time scales, primarily by postrecruitment ecological filters rather than by oceanographic barriers to larval-mediated gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号