首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of rats to environmental heat enhances the expression of heat shock protein-72 (Hsp-72) in most of their organs proportionally to heat stress severity. Pre-induction or over-expression of Hsp-72 prevents organ damage and lethality, suggesting that heat shock proteins (Hsps) may have a pathogenic role in this condition. We investigated the expression profile of Hsps in baboons subjected to environmental heat stress until the core temperature attained 42.5°C (moderate heatstroke) or occurrence of hypotension associated with core temperature ≥43.5°C (severe heatstroke). Western blot analysis demonstrated a differential induction of Hsp-72 among organs of heat-stressed animals with the highest induction in the liver and the lowest in lung. Hsp-60 and Hsc-70 expression was similar between control and heat-stressed animals. ELISA studies indicated a marked release of Hsp-72 into the circulation of baboons with severe heatstroke with a peak at 24 h post-heatstroke onset and remained sustained up to 72 h. Hsp-72 release was not associated with core temperature or systolic blood pressure, but correlated with markers of liver, myocardium, and skeletal muscle tissue necrosis. Non-survivors displayed significantly higher Hsp-72 levels than survivors. No Hsp-60 was detected in the circulation. These findings add further evidence that increased expression of Hsp-72 may be an important component of the host response to severe heatstroke. They also suggest that extracellular Hsp-72 is a marker of multiple organs tissue damage. Whether extracellular Hsp-72 plays a role in the host immune response to heat stress merits further studies.  相似文献   

2.
The malaria parasite-infected erythrocyte is a multi-compartment structure, incorporating numerous different membrane systems. The movement of nutrients, metabolites and inorganic ions into and out of the intraerythrocytic parasite, as well as between subcellular compartments within the parasite, is mediated by transporters and channels – integral membrane proteins that facilitate the movement of solutes across the membrane bilayer. Proteins of this type also play a key role in antimalarial drug resistance. Genes encoding transporters and channels account for at least 2.5% of the parasite genome. However, ascribing functions and physiological roles to these proteins, and defining their roles in drug resistance, is not straightforward. For any given membrane transport protein, a full understanding of its role(s) in the parasitized erythrocyte requires a knowledge of its subcellular localization and substrate specificity, as well as some knowledge of the effects on the parasite of modifying the sequence and/or level of expression of the gene involved. Here we consider recent work in this area, describe a number of newly identified transport proteins, and summarize the likely subcellular localization and putative substrate specificity of all of the candidate membrane transport proteins identified to date.  相似文献   

3.
4.
Despite convincing physiological evidences for vasopressin (VP) autoregulation in the supraoptic (SON) and paraventricular (PVN) nuclei, the morphological demonstration of VP synapses has lagged behind. The present work investigates the possible existence of such synapses in the SON and PVN of the rat. Electron microscopy of sections immunostained with VP antibody (1:5,000) and conjugated with avidin-biotin demonstrated presynaptic terminals containing neurosecretory granule (NSG)-like bodies, 80-100 nm in diameter. The terminals formed axodendritic, axosomatic and axoaxonic synapses, though the postsynaptic elements remained largely unidentified. Other ultrastructural features of synaptic specialization were evident. The NSG-like bodies exhibited a varying and dynamic relationship to the presynaptic membrane, suggesting their involvement in synaptic mechanisms.  相似文献   

5.
A comparative characteristic of alkaline phosphatase and Na(+)-K(+)-ATPase localization activity within white rat myocardium is presented at the ultrastructural level. Both different in principle and common features of the enzyme reactional products precipitation are revealed. The original technique is used to determine ouabain-sensitive potassium-dependent p-nitrophenylphosphatase part of Na(+)-K(+)-ATPase complex at physiological pH. The verification of the main characteristics of Na(+)-K(+)-ATPase complex membrane localization activity within the rat myocardium using this cytochemical procedure are discussed.  相似文献   

6.
The major structural proteins of Newcastle disease virus and Sendai virus were localized in infected BHK-21 and MDBK cells by ultrastructural immunoperoxidase cytochemistry using antibodies against the individual viral protein antigens. The intracellular glycoproteins were strictly membrane bound, being localized in the rough endoplasmic reticulum (RER), perinuclear spaces, smooth membrane vesicles, and presumed Golgi apparatus. The nucleocapsid proteins were detected exclusively in membrane free cytosol and accumulated there, forming inclusions. The membrane (M) protein was found both in cytosol and on RER. The viral proteins on RER exhibited a distinct site specificity; the glycoproteins were facing the lumen of RER whereas M protein was present at the outer cytoplasmic surface. All the viral proteins were detectable at the plasma membrane where virus assembly takes place. However, their modes of distribution differed remarkably. The glycoproteins were spread widely over the entire cell surface including the areas of virus budding and those of normal morphology, whereas M protein was localized in restricted areas of the membrane, frequently forming a patch of virus specific membrane. The presence of nucleocapsids was confined to the virus particles budding from the plasma membrane. These results complement and extend the earlier morphological and biochemical data on the assembly or morphogenesis of paramyxoviruses.  相似文献   

7.
Endosomes are one of the major membrane sorting checkpoints in eukaryotic cells and they regulate recycling or destruction of proteins mostly from the plasma membrane and the Golgi. As a result the endosomal system plays a central role in maintaining cell homeostasis, and mutations in genes belonging to this network of organelles interconnected by vesicular transport, cause severe pathologies including cancer and neurobiological disorders. It is therefore of prime relevance to understand the mechanisms underlying the biogenesis and organization of the endosomal system. The yeast Saccharomyces cerevisiae has been pivotal in this task. To specifically label and analyze at the ultrastructural level the endosomal system of this model organism, we present here a detailed protocol for the positively charged nanogold uptake by spheroplasts followed by the visualization of these particles through a silver enhancement reaction. This method is also a valuable tool for the morphological examination of mutants with defects in endosomal trafficking. Moreover, it is not only applicable for ultrastructural examinations but it can also be combined with immunogold labelings for protein localization investigations.  相似文献   

8.
Unfixed cryostat sections of rat liver were incubated to demonstrate D-amino acid oxidase activity at the ultrastructural level. Incubation was performed by mounting the sections on a semipermeable membrane which was stretched over a gelled incubation medium containing D-proline as substrate and cerium ions as capture reagent for hydrogen peroxide. After an incubation period of 30 min, ultrastructural morphology was retained to such an extent that the final reaction product could be localized in peroxisomes, whereas the crystalline core remained unstained. Control incubations were performed in the absence of substrate; the lack of final reaction product in peroxisomes indicated the specificity of the reaction. We conclude that the semipermeable membrane technique opens new perspectives for localization of enzyme activities at the ultrastructural level without prior tissue fixation, thus enabling localization of the activity of soluble and/or labile enzymes.  相似文献   

9.
The localization of an ouabain-sensitive potassium-dependent p-nitrophenylphosphatase part of the Na+,K(+)-ATPase complex in the white rat's brain has been studied at the ultrastructural level. The physiological pH of incubation medium highly increases the specificity of ultracytochemical enzyme demonstration. The main characteristics of the enzymatic p-NPP hydrolysis used for this methodological technique are discussed.  相似文献   

10.
V. Bennett  J. Steiner  J. Davis 《Protoplasma》1988,145(2-3):89-94
Summary The purpose of this review is to summarize recent progress in understanding interactions of spectrin with membranes from brain and other tissues. Spectrin has at least two choices in linkages with the membrane, one through ankyrin, which in turn is associated with integral membrane proteins, and another linkage directly with integral membrane sites identified recently in brain membranes. Some of the integral membrane protein sites in brain bind preferentially with one spectrin isoform, while some can interact with both erythroid and the general isoform of spectrin. Ankyrin also has different isoforms, and these exhibit specificity in binding to spectrin isoforms and associate with distinct integral membrane proteins. The membrane binding sites for ankyrin include several integral membrane proteins, which are differentially expressed in different cells: the anion exchanger of intercalated cells of mammalian kidney, the sodium/potassium ATPase of kidney, and the voltage-dependent sodium channel of neurons. Ankyrin is present in many other cell types and it is likely that additional ankyrin-binding proteins will be identified. Each of the proteins that now are candidates for ankyrin binding proteins are ion channels or transporters and are localized in specialized cellular domains. The polarized localization of the ankyrin-associated membrane proteins is an essential aspect of their function at a physiological level. Spectrin and ankyrin thus exhibit an unsuspected diversity in protein linkages and have the potential for cell domain-specific interactions with a variety of membrane proteins.  相似文献   

11.
In the stress fibers of two types of nonmuscle cells, epithelia (PtK2, bovine lens) and fibroblasts (Gerbil fibroma, WI-38, primary human) the spacing between sites of alpha-actinin localization differs by a factor of about 1.6 as determined by indirect immunofluorescence and ultrastructural localization with peroxidase-labeled antibody. Both methods reveal striations along the stress fibers with a center-to- center spacing in the range of 0.9 mum in epithelial cells and 1.5 mum in fibroblasts. Periodic densities spaced at comparable distances are seen in PtK2 and in gerbil fibroma cells when they are treated with tannic acid and examined in the electron microscope. In such cells, densities are found not only along stress fibers but also at cell-cell junctions, attachment plaques, and foci from which stress fibers radiate. These latter three sites all stain with alpha-actinin antibody on the light and electron microscope level. Stress fibers in the two cell types also vary in the periodicity produced by indirect immunofluorescence with tropomyosin antibodies. As is the case for alpha-actinin, the tropomyosin center-to-center banding is approximately 1.6 times as long in gerbil fibroma cells (1.7 mum) as it is in PtK2 cells (1.0 mum). These results suggest that the densities seen in the electron microscope are sites of alpha-actinin localization and that the proteins in stress fibers have an arrangement similar to that in striated muscle. We propose a sarcomeric model of stress fiber structure based on light and electron microscopic findings.  相似文献   

12.
The ability to preserve the fragile ultrastructural organization of bacterial biofilms using cryo-preparation methods for electron microscopy has enabled us to probe sections through non-typeable Haemophilus influenzae (NTHi) biofilms and determine the localization of NTHi-specific lipooligosaccharide (LOS) and proteins within these structures. Some of the proteins we examined are currently being considered as candidates for vaccine development, so it is important that their distribution and accessibility within the biofilms formed by NTHi be determined. We have localized LOS to the extracellular matrix (ECM) of the biofilm and the P6 outer membrane protein to the membrane of what appear to be viable bacteria within the biofilm. The Hap and HWM1/HMW2 adhesive proteins were associated with bacteria within the biofilm and were present in the biofilm ECM. The IgA1 protease is a secreted protein that was also associated with NTHi in the biofilm and was in the ECM, but was more concentrated in the top region of the biofilm, suggesting a role in protecting biofilm bacteria from antibody attack.  相似文献   

13.
In the present study we characterize a novel RhoGAP protein (RC-GAP72) that interacts with actin stress fibers, focal adhesions, and cell-cell adherens junctions via its 185-amino acid C-terminal region. Overexpression of RC-GAP72 in fibroblasts induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. RC-GAP72 mutant truncated downstream of the GTPase-activating protein (GAP) domain retains the ability to stimulate membrane protrusions but fails to affect stress fiber integrity or induce cell retraction. A mutant protein consisting of the C terminus of RC-GAP72 and lacking the GAP domain does not exert any visible effect on cellular morphology. Inactivation of the GAP domain by a point mutation does not abolish the effect of RC-GAP72 on actin stress fibers but moderates its capability to induce membrane protrusions. Our data imply that the cytoskeletal localization of RC-GAP72 and its interaction with GTPases are essential for its effect on the integrity of actin stress fibers, whereas the induction of lamellipodia and filopodia depends on the activity of the GAP domain irrespective of binding to the actin cytoskeleton. We propose that RC-GAP72 affects cellular morphology by targeting activated Cdc42 and Rac1 GTPases to specific subcellular sites, triggering local morphological changes. The overall physiological functions of RC-GAP72 are presently unknown, yet our data suggest that RC-GAP72 plays a role in regulating cell morphology and cytoskeletal organization.  相似文献   

14.
Summary We describe the preparation of monoclonal antibodies to nuclear antigens in the green alga,Chlamydomonas reinhardtii, and their localization at the light and electron microscope level. Supernatants from hybridomas were screened by the ELISA method and the four antibodies giving the strongest signal were subjected to further analysis. At the LM level immunogold silver staining was used on semi-thick resinless sections. We have examined at the EM level the distribution of these antigens by post-embedding immunocytochemical techniques on sections of conventionally fixed specimens compared to cryofixed and freeze-substituted ones. Enhanced ultrastructural preservation was observed in cells which were cryofixed, freeze-substituted and embedded at –35°C in Lowicryl K4M. Different preparative procedures involving cryofixation and substitution are described. Of the four antibodies three were localized under light and electron microscopy. All three were distributed in the interchromatin space. One of these antigens (QUL4D2, 54 kDa) is also found in the dense fibrillar component and fibrillar centers of the nucleolus.Abbreviations DFC dense fibrillar component - EM electron microscope - FC fibrillar center - GAM5 goat anti-mouse IgM coupled to 5 nm colloidal gold - Ig immunoglobulin - LM light microscope - MAb monoclonal antibody - PAG protein A-gold - PBS phosphate buffered saline - PEG polyethylene glycol  相似文献   

15.
The heat shock proteins are a family of stress-inducible proteins that act as molecular chaperones for nascent proteins and assist in protection and repair of proteins whose conformation is altered by stress. HSP72 and HSP73 are two major cytosolic/nuclear stress proteins of mammalian cells, with extensive sequence homology. HSP73 is constitutively expressed, whereas HSP72 is highly stress-inducible. However, it is unclear why two isoforms are expressed and whether these two proteins have different functions in the cell. To assist in the delineation of function, we have completed a detailed study of the localization of HSP72 and HSP73 in the cell before and after heat stress, using two different methods of detection. By indirect immunohistochemistry, the localization of these two proteins is similar, cytoplasmic and nuclear in nonstressed cells with a translocation to nucleoli immediately after heat. By the more sensitive immunogold electron microscopy technique, differences in localization were noted. In nonstressed cells, HSP72 was primarily nuclear, localized in heterochromatic regions and in nucleoli. HSP73 was distributed throughout the cell, with most cytoplasmic label associated with mitochondria. Mitotic chromosomes were also heavily labeled. After stress, HSP72 concentrated in nuclei and nucleoli and HSP73 localized to nuclei, nucleoli, and cytoplasm, with increased label over mitochondria. These differences in localization suggest that the HSP72 and HSP73 may associate with different proteins or complexes and hence have different but overlapping functions in the cell.  相似文献   

16.
Ultrastructural localization of growth hormone in rat anterior pituitary and of muscle-specific actin in rabbit arterial smooth muscle cells was accomplished with a post-embedment procedure using colloidal gold. Plastic sections (2 microns) were mounted on slides, deplasticized, immunostained with immunoglobulin-colloidal gold particles, re-embedded in Epon, and sectioned for electron microscopy. This procedure enabled light and electron microscopic localization of these intracellular antigens on the same section. Positive immunostaining was demonstrated with this procedure with a muscle-specific actin antibody which previously failed to localize antigenic sites by EM. The procedure described yielded staining of high specificity, with minimal background and well-preserved ultrastructure. This re-embedding technique is useful in situations where problems with post-embedding EM immunostaining exist and where correlative LM and EM immunostaining is essential.  相似文献   

17.
Extracts of isolated microvascular endothelial cells (MEC) and cultured bovine aortic endothelial cells (BAEC) were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), electrotransfer and incubation with albumin either radioiodinated or adsorbed to 5-nm gold particles. Both ligands reacted exclusively with two peptides of 18 and 31 kDa. To the 18 kDa peptide (excised from preparative SDS-PAGE), an antibody was raised in rabbits and purified by affinity on 18 kDa obtained from two-dimensional gel electrophoresis and immobilized on nitrocellulose paper. The specificity of the anti-18 kDa was assessed by immunoblotting and immunoprecipitation of endothelial cell extracts. To check whether the 18 kDa peptide is exposed on the endothelial cell surface and/or its components (uncoated pits, open plasmalemmal vesicles), the apical membrane of BAEC was radioiodinated, the solubilized proteins incubated with the anti-18 kDa, and the immune complexes formed were precipitated with protein A-Sepharose CL-4B. The ensuing SDS-PAGE and autoradiography revealed that from all radioiodinatable surface proteins, the 18 kDa was the only polypeptide immunoprecipitated by the anti-18 kDa antibody. To localize the 18 kDa peptide, we applied indirect immunofluorescence technique on cultured MEC and BAEC and immunoelectron microscopy (EM) on ultrathin cryosections of mouse heart. Nonpermeabilized whole MEC and BAEC incubated with anti-18 kDa followed by rhodamine-conjugated second antibody showed a relatively intense surface fluorescence often appearing as small dots. At the EM level, heart ultrathin cryosections exposed anti-18 kDa followed by gold-conjugated second antibody revealed that 18 kDa was primarily associated with the membrane of plasmalemmal vesicles of capillary endothelia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Rapid generation of reactive oxygen species (ROS) at the cell surface has been implicated in plant defence responses. Genetic evidence indicates that a plant NADPH oxidase (Rboh; respiratory burst oxidase homologue) is associated with oxidative burst. However, there is not enough physiological evidence of Rboh localization available yet. Isozyme-specific antibodies against potato StrbohA and StrbohB (St; Solanum tuberosum) were prepared to investigate the localization of these proteins. Immunoblot analyses using potato microsomal proteins revealed that StrbohA was expressed constitutively at a low level, whereas the accumulation of StrbohB protein was induced by the cell wall elicitor of the potato pathogen Phytophthora infestans. It is demonstrated here that StrbohA and StrbohB are distributed in plasma membrane fractions which have been separated by sucrose density-gradient centrifugation using their specific antibodies. Green fluorescent protein-tagged Strboh proteins were also located on the plasma membrane by transient expression assay in onion epidermal cells. Additionally, NADPH-dependent O2(-)-generating activities in plasma membrane fractions were diphenylene iodonium-sensitive and NaN3-insensitive. These data suggest that StrbohA and StrbohB are predominantly localized on the plasma membrane and regulate ROS production in defence signalling.  相似文献   

20.
    
Summary The ultrastructural localization of Tamm—Horsfall protein (THP) was studied in paraformaldehyde-fixed human renal biopsies. Pre-embedding and post-embedding immunogold labelling techniques were developed utilizing a monoclonal antibody specific for human urinary THP. With the pre-embedding technique, membrane contrast was enhanced by osmification thus allowing precise localization of gold particles. Reasonable tissue penetration of antibodies was achieved without compromising ultrastructural detail. The hydrophilic resin LR White was used for post-embedding labelling to ensure maximum penetration of antibodies. However, sections had only mild osmification and consequently localization of label was less certain. Both labelling techniques gave similar results. THP was found to be associated with two renal cell types. Epithelial cells lining the thick ascending limb of Henle's loop had gold label closely associated with the whole cell plasmalemma, with some of these cells having an apparently random distribution of label throughout the cytoplasm. Only the luminal plasmalemma of epithelial cells lining distal convoluted tubules were found to be labelled. Basolateral membranes and the cytoplasm of these cells were negative. The use of a monoclonal antibody of defined specificity combined with the two immunolabelling procedures represents a precise reliable method for studying ultrastructural localization of THP in the human kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号