首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in mean arterial pressure (MAP), renal (RBF) and femoral (FBF) blood flows, and inferior cardiac (CN) and vertebral nerve (VN) sympathetic nerve discharges (SND) produced by chemical activation (D,L-homocysteic acid) of the midbrain periaqueductal gray (PAG) were compared in baroreceptor-denervated and -innervated cats anesthetized with urethan. Defenselike cardiovascular responses in both states were similar in magnitude and consisted of increased MAP and FBF and decreased RBF; however, the nerve responses differed. In baroreceptor-denervated cats, PAG activation increased CN 10-Hz activity, decreased VN 10-Hz activity, and lengthened the CN-VN phase angle. In baroreceptor-innervated cats in which the rhythm in SND was cardiac related, PAG activation increased CN activity, but VN activity and the CN-VN phase angle were unchanged. These results demonstrate that chemical activation of PAG neurons induces differential patterns of sympathetic outflow generally consistent with accompanying defenselike cardiovascular responses. However, the mechanisms responsible for the changes in 10-Hz and cardiac-related SND appear to be different.  相似文献   

2.
In urethan-anesthetized cats, frequency domain analysis was used to explore the mechanisms of differential responses of inferior cardiac (CN), vertebral (VN), and renal (RN) sympathetic nerves to electrical stimulation of a discrete region of the medullary raphe (0-2 mm caudal to the obex). Raphe stimulation in baroreceptor-denervated cats at frequencies (7-12 Hz) that entrained the 10-Hz rhythm in nerve activity decreased CN and RN activities but increased VN activity. The reductions in CN and RN discharges were associated with decreased low-frequency (相似文献   

3.
Frequency- and time-domain analyses were used to compare the effects of stimulation of the defense region of the midbrain periaqueductal gray (PAG) on the 10-Hz and cardiac-related discharges of sympathetic nerves with different cardiovascular targets. In baroreceptor-denervated cats anesthetized with urethan, PAG stimulation at frequencies equal to or higher (up to 25 Hz) than that of the free-running 10-Hz rhythm produced an immediate and sustained decrease in vertebral sympathetic nerve (VN) 10-Hz activity but increased the 10-Hz discharges of the inferior cardiac (CN) and renal (RN) nerves. In baroreceptor-innervated cats, VN cardiac-related activity was initially unchanged by high-frequency (25-Hz) PAG stimulation, or it increased along with that in the CN and RN. Later, during high-frequency PAG stimulation, when the rise in blood pressure approached its peak, VN cardiac-related activity usually was reduced below control level. At this time, the increases in CN and RN cardiac-related discharges were largely sustained. The cardiac-related discharges of the three nerves were unaffected by PAG stimulation at frequencies just below or just above that of the heartbeat. We conclude that the defenselike pattern of spinal sympathetic outflow involving the 10-Hz rhythm is different in mechanism and character from that involving the cardiac-related rhythm.  相似文献   

4.
Gamma oscillations can synchronize with near zero phase lag over multiple cortical regions and between hemispheres, and between two distal sites in hippocampal slices. How synchronization can take place over long distances in a stable manner is considered an open question. The phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike, depending upon where in the cycle it is received. We use PRCs under the assumption of pulsatile coupling to derive existence and stability criteria for 1:1 phase-locking that arises via bidirectional pulse coupling of two limit cycle oscillators with a conduction delay of any duration for any 1:1 firing pattern. The coupling can be strong as long as the effect of one input dissipates before the next input is received. We show the form that the generic synchronous and anti-phase solutions take in a system of two identical, identically pulse-coupled oscillators with identical delays. The stability criterion has a simple form that depends only on the slopes of the PRCs at the phases at which inputs are received and on the number of cycles required to complete the delayed feedback loop. The number of cycles required to complete the delayed feedback loop depends upon both the value of the delay and the firing pattern. We successfully tested the predictions of our methods on networks of model neurons. The criteria can easily be extended to include the effect of an input on the cycle after the one in which it is received.  相似文献   

5.
Like virtually all other physiological control systems, the sympathetic nervous system controlling cardiovascular function is characterized by the presence of rhythmic activity. These include slow rhythms with frequencies at or below that of the respiration and rapid rhythms with frequencies at or above that of the heart beat. The rapid rhythms are the subject of this review. The specific questions entertained are as follows: (1) Are the rapid cardiac-related and 10-Hz rhythms inherent to central sympathetic networks, or are they imposed on sympathetic nerve discharge (SND) by extrinsic periodic inputs? (2) Does basal SND arise from an anatomically circumscribed "vasomotor center" composed of pacemaker neurons in the rostral ventrolateral medulla or from an anatomically distributed network oscillator composed of different types of brainstem neurons, none of which necessarily have intrinsic pacemaker properties? (3) Are the rapid rhythms generated by single circuits or by systems of coupled oscillators, each with a separate target? (4) Are the rapid rhythms in SND simply by-products of the sympathetic generating mechanisms, or do they subserve selective and special functions, such as the formulation of differential patterns of spinal sympathetic outflow that support particular behaviors? The controversial aspects of these issues and the state-of-the-art analytical methods used to study them are stressed in this review.  相似文献   

6.
The interactions (i.e., coupling) between multiple oscillators of a circadian system determine basic properties of the integrated pacemaker. Unfortunately, there are few experimental models to investigate the putative interactions of functionally defined oscillators comprising the mammalian circadian pacemaker. Here the authors induce in hamsters a novel circadian entrainment pattern that is characterized by the daily expression of robust wheel-running activity in each scotophase of a 24-h light:dark:light:dark cycle. The daily activity bouts are mediated by 2 circadian oscillators, here designated "daytime" and "nighttime," that have been temporally dissociated under this light regime. To assess the phase dependence of interactions between oscillatory components, the phase relationship of the 2 daily scotophases was manipulated over a 4-h range, and the timing of activity of the daytime and nighttime components under entrained and probe conditions was examined. The average phase angle of entrainment and the day-to-day variability of activity onset of each activity component depended on the phase relationship of the respective scotophases and not on whether the component occurred in the daytime or the nighttime. Short-term denial of wheel access subsequently influenced amount and duration of wheel running but not timing of its onset, suggesting that only the former measures depend on a homeostatic mechanism sensitive to the time elapsed since prior intense running. Replacement of individual photophases with darkness revealed phase attraction between oscillators that was not dependent on the phase relationship of component oscillators but differed for daytime versus nighttime activity components. Entrainment patterns shown here cannot be accounted for by only nonparametric actions of light. Instead, the phase-dependent interactions of oscillators strongly influence entrainment properties, whereas intrinsic functional differences in dissociated oscillators apparently influence their attraction in darkness. This model system may be ideal for identifying genomic and physiological factors that mediate these interactions and thus contribute importantly to system properties of the mammalian circadian clock.  相似文献   

7.
Circadian pacemakers in many animals are compound. In rodents, a two-oscillator model of the pacemaker composed of an evening (E) and a morning (M) oscillator has been proposed based on the phenomenon of "splitting" and bimodal activity peaks. The authors describe computer simulations of the pacemaker in tau mutant hamsters viewed as a system of mutually coupled E and M oscillators. These mutant animals exhibit normal type 1 PRCs when released into DD but make a transition to a type 0 PRC when held for many weeks in DD. The two-oscillator model describes particularly well some recent behavioral experiments on these hamsters. The authors sought to determine the relationships between oscillator amplitude, period, PRC, and activity duration through computer simulations. Two complementary approaches proved useful for analyzing weakly coupled oscillator systems. The authors adopted a "distinct oscillators" view when considering the component E and M oscillators and a "system" view when considering the system as a whole. For strongly coupled systems, only the system view is appropriate. The simulations lead the authors to two primary conjectures: (1) the total amplitude of the pacemaker system in tau mutant hamsters is less than in the wild-type animals, and (2) the coupling between the unit E and M oscillators is weakened during continuous exposure of hamsters to DD. As coupling strength decreases, activity duration (alpha) increases due to a greater phase difference between E and M. At the same time, the total amplitude of the system decreases, causing an increase in observable PRC amplitudes. Reduced coupling also increases the relative autonomy of the unit oscillators. The relatively autonomous phase shifts of E and M oscillators can account for both immediate compression and expansion of activity bands in tau mutant and wild-type hamsters subjected to light pulses.  相似文献   

8.
The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power output over a gait cycle (3, 4), phase control could be used for limiting the overall energy expenditure with increasing speed (22). Adaptation to different walking conditions, such as changes in body posture, body weight unloading and backward walk, also involves inter-segmental phase tuning, as does the maturation of limb kinematics in toddlers.  相似文献   

9.
This study proposes a method for the automatic classification of nonlinear interactions between a strictly periodical event series modelling the activity of an exogenous oscillator working at a fixed and well-known rate and an event series modelling the activity of a self-sustained oscillator forced by the exogenous one. The method is based on a combination of several well-known tools (probability density function of the cyclic relative phase, probability density function of the count of forced events per forcing cycle, conditional entropy of the cyclic relative phase sequence and a surrogate data approach). Classification is reached via a sequence of easily applicable decision rules, thus rendering classification virtually user-independent and fully reproducible. The method classifies four types of dynamics: full uncoupling, quasiperiodicity, phase locking and aperiodicity. In the case of phase locking, the coupling ratio (i.e. n:m) and the strength of the coupling are calculated. The method, validated on simulations of simple and complex phase-locking dynamics corrupted by different levels of noise, is applied to data derived from one anesthetized and artificially ventilated rat to classify the nonlinear interactions between mechanical ventilation and: (1) the discharges of two (contemporaneously recorded) single postganglionic sympathetic neurons innervating the caudal ventral artery in the tail and (2) arterial blood pressure. Under central apnea, the activity of the underlying sympathetic oscillators is perturbed by means of five different lung inflation rates (0.58, 0.64, 0.76, 0.95, 1.99 Hz). While ventilation and arterial pressure are fully uncoupled, ventilation is capable of phase locking sympathetic discharges, thus producing 40% of phase-locked patterns (one case of 2:5, 1:1, 3:2 and 2:2) and 40% of aperiodic dynamics. In the case of phase-locked patterns, the coupling strength is low, thus demonstrating that this pattern is sliding. Non-stationary interactions are observed in 20% of cases. The two discharges behave differently, suggesting the presence of a population of sympathetic oscillators working at different frequencies.  相似文献   

10.
In most cases, phase-shifting effects of light pulses are studied in animals kept in constant darkness (DD) or in animals released into DD following the stimulus. In this study, the authors exposed Djungarian hamsters (Phodopus sungorus) to short light pulses during the dark phase of a 16:8 light-dark (LD) cycle and thus obtained a type VI phase response curve. Light pulses early in the night caused phase delays of the activity onset as well as phase advances of the activity offset, whereas light pulses later in the night resulted in phase advances of the activity offset only. A combination of two 15-min light pulses-the first one given late in the scotophase and the second given early in the dark phase of the following night-led to a strong compression of the activity phase alpha. In 75% of all animals, daily rhythms were no longer visible after complete alpha compression, and long-term arrhythmicity (up to 145 days) persisted despite continued exposure to an LD cycle. Because three independent output rhythms of the clock (i.e., activity, body temperature, and melatonin rhythms) were equally affected, the authors conclude that overt arrhythmicity was due not merely to disrupted output pathways but to an altered state of the central pacemaker. The authors suggest a qualitative two-oscillator model to explain this phenomenon. Their hypothesis assumes that, due to loose coupling, the pacemaker of Djungarian hamsters can be driven to a state of zero phase difference between the two oscillators, with zero amplitude of their outputs.  相似文献   

11.
Splitting of locomotor activity rhythm in hamsters occurs when the animals are exposed for several weeks to constant light. The authors propose a mathematical model that explains splitting in terms of a switch in the sign of coupling of two oscillators, from positive to negative, due to long-term exposure to constant light. The model assumes that the two oscillators are not identical and that the negative coupling strengths achieved by each individual animal are variable. With these assumptions, the model provides a unified picture of all different splitting patterns presented by the hamsters, provides an explanation for why the two activity components cross each other during many patterns, and explains why the phase difference achieved by the split components is often near 180 degrees.  相似文献   

12.
Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection.  相似文献   

13.
Although it is well established that bulbospinal neurons located in the rostral ventrolateral medulla (RVLM) play a pivotal role in regulating sympathetic nerve activity and blood pressure, virtually all neurophysiological studies of this region have been conducted in anesthetized or decerebrate animals. In the present study, we used time- and frequency-domain analyses to characterize the naturally occurring discharges of RVLM neurons in conscious cats. Specifically, we compared their activity to fluctuations in carotid artery blood flow to identify neurons with cardiac-related (CR) activity; we then considered whether neurons with CR activity also had a higher-frequency rhythmic firing pattern. In addition, we ascertained whether the surgical removal of vestibular inputs altered the rhythmic discharge properties of RVLM neurons. Less than 10% of RVLM neurons expressed CR activity, although the likelihood of observing a neuron with CR activity in the RVLM varied between recording sessions, even when tracking occurred in a very limited area and was higher after vestibular inputs were surgically removed. Either a 10-Hz or a 20- to 30-Hz rhythmic discharge pattern coexisted with the CR discharges in some of the RVLM neurons. Additionally, the firing rate of RVLM neurons, including those with CR activity, decreased after vestibular lesions. These findings raise the prospect that RVLM neurons may or may not express rhythmic firing patterns at a particular time due to a variety of influences, including descending projections from higher brain centers and sensory inputs, such as those from the vestibular system.  相似文献   

14.
We recorded changes in right inferior cardiac and either left inferior cardiac or left vertebral sympathetic nerve discharge (SND) produced by unilateral microinjections of GABA-A and excitatory amino acid (EAA) receptor antagonists into the ventrolateral medulla (VLM) of urethane-anesthetized, baroreceptor-denervated cats. Unilateral microinjections of GABA-A receptor antagonists, SR-95531 or bicuculline, into single tracks in VLM anywhere between 1 and 5 mm rostral to the obex eliminated or markedly reduced 10-Hz power in SND on both sides of the body. Low-frequency components (<6 Hz) of SND were unaffected. Complete blockade of the 10-Hz rhythm occurred with a dose of SR-95531 as low as 6.25 pmol in a 50-nl volume. Unilateral microinjections of the nonselective EAA receptor antagonist, kynurenate (KYN; 7.5 nmol), into the caudal or rostral VLM significantly reduced, but did not eliminate, 10-Hz SND ipsilateral to the injection sites, while 10-Hz SND contralateral to the injection sites was not significantly changed. These observations suggest that 1) GABAergic transmission in VLM is critical for generation of the 10-Hz rhythm, 2) the caudal and rostral portions of VLM act together to generate the 10-Hz rhythm, and 3) 10-Hz rhythm generation depends, at least in part, on tonic or phasic excitatory drive to GABAergic interneurons in caudal VLM and presympathetic neurons in rostral VLM. The data also suggest that pathways interconnecting the two halves of the brain stem play an important role in promoting 10-Hz rhythm generation.  相似文献   

15.
Hamsters that showed splitting of their circadian rhythms of wheel-running activity following long-term exposure to constant illumination (LL) were exposed to light-dark (LD) cycles with 2-hr dark segments, and with periods of 24.00, 24.23 or 24.72 hr. For comparison, hamsters showing nonsplit rhythms were also studied. In all cases of split rhythms, at least one of the two split components entrained to the LD cycles. In some animals, the second component continued to free-run until it merged with the entrained component, while in others, the second component also entrained to the LD cycle but maintained a stable phase angle of 6-14.5 hr relative to dark onset. These results were obtained in cases where the period of the LD cycle was shorter than that of the split rhythms and in cases where it was longer, implying that split components can be phase-advanced as well as phase-delayed by 2 hr of darkness. Three hamsters that showed stable entrainment of split rhythms were allowed to free-run in LL. The LD cycles were then reinstated, but instead of overlapping with the first component, as it did before, the dark segment was timed to overlap with the second. The entrainment patterns that ensued were similar to the ones obtained during the first LD exposure, indicating that the two split components respond to darkness in a qualitatively similar fashion. These results are further evidence that the pacemaker system underlying split circadian activity rhythms in hamsters is composed of two mutually coupled populations of oscillators that have similar properties, including a bidirectional phase response curve. Such a dual-oscillator organization may also underlie normal, or nonsplit, activity rhythms, as suggested by Pittendrigh and Daan (1976c), but the data are also compatible with the alternative view that the circadian pacemaker consists of a large number of coupled oscillators, which only dissociate into two separate populations in some animals under conditions of moderate LL intensity.  相似文献   

16.
We studied the changes in inferior cardiac sympathetic nerve discharge (SND) produced by unilateral microinjections of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists into the ventrolateral medulla (VLM) of urethane-anesthetized, baroreceptor-denervated cats. Microinjection of the 5-HT2 receptor antagonist LY-53857 (10 mM) into either the rostral or caudal VLM significantly reduced (P < or = 0.05) the 10-Hz rhythmic component of basal SND without affecting its lower-frequency, aperiodic component. The selective depression of 10-Hz power was accompanied by a statistically significant decrease in mean arterial pressure (MAP). Microinjection of LY-53857 into the VLM also attenuated the increase in 10-Hz power that followed tetanic stimulation of depressor sites in the caudal medullary raphé nuclei. Microinjection of the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)2-amino-propane (DOI; 10 microM) into the VLM selectively enhanced 10-Hz SND, and intravenous DOI (1 mg/kg) partially reversed the reduction in 10-Hz SND produced by 5-HT2 receptor blockade in the VLM. Microinjection of the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OHDPAT; 10 mM), into either the rostral or caudal VLM also selectively attenuated 10-Hz SND and significantly reduced MAP. The reduction in 10-Hz SND produced by 8-OHDPAT was partially reversed by intravenous WAY-100635 (1 mg/kg), which selectively blocks 5-HT1A receptors. These results support the view that serotonergic inputs to the VLM play an important role in expression of the 10-Hz rhythm in SND.  相似文献   

17.
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time‐lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode‐locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev‐Erbα‐YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.  相似文献   

18.
Electroacupuncture (EA) applied to the abdomen and hindlimb modulates the ovarian blood flow (OBF) response. The present study aimed to further elucidate the role of the site and the frequency of short-term EA stimulation and the influence of the estrous cycle on the OBF response using anesthetized rats. EA stimulation was applied to the abdominal or the hindlimb muscles at three different frequencies (2, 10, and 80 Hz) during the estrus or diestrus phase. Involvement of spinal and supraspinal reflexes in OBF responses to EA stimulation was investigated by spinal cord transection. Abdominal EA stimulation at 10 Hz increased the OBF response, whereas hindlimb EA stimulation at 10 Hz and abdominal and hindlimb stimulation at 80 Hz decreased the OBF response; 2-Hz EA caused no OBF response. The OBF response to abdominal EA was more pronounced in the estrus than the diestrus phase. The OBF response to abdominal and hindlimb EA stimulation at both 10 and 80 Hz was almost abolished, both after severance of the sympathetic nerves and after spinal cord transection. In conclusion, the OBF response to both abdominal and hindlimb EA stimulation was mediated as a reflex response via the ovarian sympathetic nerves, and the response was controlled via supraspinal pathways. Furthermore, the OBF response to segmental abdominal EA stimulation was frequency dependent and amplified in the estrous phase.  相似文献   

19.
The pineal hormone melatonin influences circadian rhythms and also mediates reproductive responses to photoperiod. The authors tested whether pinealectomy influences circadian oscillators responsible for induction of nonresponsiveness to short day lengths by preventing normal short-day patterns of circadian entrainment. Adult male Siberian hamsters were pinealectomized or sham operated, maintained in either 18 h light per day (18L) or 15L for 10 weeks, and then tested for responsiveness to 10L. Because pinealectomized hamsters do not show gonadal regression in short day lengths, responsiveness was assessed by measuring phase angle of entrainment and the length of the nightly activity period following transfer to 10L. The incidence of nonresponsiveness was significantly higher in 18L hamsters than in 15L hamsters but was unaffected by pineal status. Fully 88% of 18L hamsters failed to entrain to 10L in the normal short-day manner; the duration of nightly activity remained compressed, and the phase angle of entrainment was large and negative relative to lights off. The 15L hamsters entrained normally to 10L. Exposure to constant light after 10L treatment was equally effective in inducing arrhythmicity in pinealectomized and intact hamsters. Changes in the period of morning and evening circadian oscillators subsequent to 18L treatment did not predict circadian responsiveness to short photoperiod. Long-day induction of photo-nonresponsiveness, which prevents winter responses to short day lengths, occurs independently of pineal melatonin feedback on the circadian system.  相似文献   

20.
Pittendrigh first found that the circadian rhythm of locomotor activity in nocturnal rodents split into two components. Hoffman then reported that the splitting phenomenon was even more reproducible in the small diurnal primate Tupaia. These “splitting” experiments and many other experiments suggest that two coupled oscillators may constitute the circadian pacemaker system. Pittendrigh proposed a phenomenological two-oscillator model. Daan and Berde developed a quantitative model assuming that the interaction between the two constituent oscillators is by instantaneous resets. Their model system can simulate several qualitative features in the experimental data. As the assumption of instantaneous resets seems to be unnatural, we study two limit cycle oscillators, which are coupled continuously to each other, as a model of the circadian pacemaker. We assume the following points, (i) One oscillator in a resting state does not affect another oscillator, (ii) Two oscillators are identical, (iii) The coupling is symmetrical. By the theory of Hopf bifurcation it is found that the general two-oscillator system has two stable periodic solutions. One is the in-phase solution where the two constituent oscillators oscillate in phase synchrony. Another is the anti-phase solution where the two oscillators oscillate 180 ° out of phase. The former corresponds to a single pattern of locomotor activity and the latter corresponds to a splitting pattern. Furthermore, we study specific two-neural oscillators, which are linearly coupled to each other. By the method of secondary bifurcation we find that the model shows simultaneous stability of the two alternative phase relationships and the hysteresis phenomena found in Tupaia. A natural period of the uncoupled constituent oscillator is longer than that of the in-phase solution but it is shorter than that of the anti-phase solution. This is in agreement with the data of Tupaia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号