首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluoride is an uncompetitive inhibitor of rat liver arginase. This study has shown that fluoride caused substrate inhibition of rat liver arginase at substrate concentrations above 4 mM. Rat kidney arginase was more sensitive to inhibition by fluoride than liver arginase. For both liver and kidney arginase preincubation with fluoride had no effect on the inhibition. When assayed with various concentrations of L-arginine, rat kidney arginase did not have Michaelis-Menten kinetics. Lineweaver-Burk and Eadie-Hofstee plots were nonlinear. Kidney arginase showed strong substrate activation at concentrations of L-arginine above 4 mM. Within narrow concentrations of L-arginine, the inhibition of kidney arginase by fluoride was uncompetitive. Fluoride caused substrate inhibition of kidney arginase at L-arginine concentrations above 1 mM. The presence of fluoride prevented the substrate activation of rat kidney arginase.  相似文献   

2.
The electrophoretic behaviour of arginase in the tissue extracts of rat, beef, lizard and frog was studied by bidirectional polyacrylamide gel electrophoresis. The enzyme from rat liver and submaxillary gland migrated to the cathode with the activity concentrated in a single peak. Arginase from beef liver emerged as a single peak of anodal migration with a significant shoulder in the sample gel. Frog liver and kidney enzymes also appeared as single peaks with a distinct anodal movement. The activity in mammalian kidney and lizard liver and kidney resolved into two peaks of anodal migration suggesting the presence of two isoenzymes of arginase in these tissues.  相似文献   

3.
Arginase from rat fibrosarcoma was purified about 1900-fold and its properties were compared with those of the enzyme from liver and kidney. Arginase from fibrosarcoma was a neutral protein of molecular weight 120,000 with a Km value of 11 mM for arginine. The activation energy was 7.2 kcal/mol and the pH optimum was 10. The fibrosarcoma enzyme was immunologically different from that of the liver. The arginase from fibrosarcoma closely resembled the arginase from the kidney in its electrophoretic, kinetic and immunological properties.  相似文献   

4.
1. Two forms of arginase were isolated from human erythrocytes; the main form adsorbed on CM-cellulose and the second form, occurring in much smaller amount, adsorbed on DEAE-cellulose. 2. The molecular weight of either arginase was 120,000 +/- 5000. 3. The erythrocyte arginases are similar in immunological properties to arginase A4 from human kidney and A2 from human liver, respectively. 4. Despite the literature data stating that human erythrocyte arginase and human liver arginase are identical, it was found that the main forms of arginase of these tissues A4 from erythrocytes and A5 from liver differ in immunological properties.  相似文献   

5.
The extrahepatic arginase, AII, from rat mammary gland was isolated and its properties investigated and compared with those of the hepatic arginase, AI. Mammary arginase activity increased 300% at mid-lactation, an increase unaccompanied by an increase in liver arginase activity. Mammary gland contained two isozymes, separable by ion exchange chromatography. The major form, AII, was purified 103-fold and antisera were raised against it. A 1300-fold purification was achieved temporarily but the enzyme was unstable. Arginase AII was kinetically similar to AI: both had pH optima of 10 and Kms for L-arginine of 12-14 mM. Arginase AII differed from AI in having a near-neutral pI and a slightly larger subunit size (39,800 Da compared to 38,900 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)). Solution immunoprecipitation studies revealed that virtually all of the arginase present in liver was type AI, whereas kidney and mammary gland contained both isozymes. Western immunoblotting showed that the amount of immunoreactive mammary arginase AII protein increased at mid-lactation in parallel with the increase in activity. This suggests that the elevated arginase activity is due to de novo protein synthesis and/or reduced protein degradation, rather than activation of arginase.  相似文献   

6.
Two isoforms of arginase, A1 and A2, were found in rat liver, submaxillary gland and kidney as well as beef kidney. In beef liver, however, A2 was the only detectable form. Two additional forms, A3 and A4, found only in rat kidney were probably artifactitious. A1 and A2 exhibited chromatographic and immunological microheterogeneity. While A1 in rat liver and submaxillary gland was excluded by DEAE-cellulose (pH 8.3) and retained on CM-cellulose (pH 7.5), that (A'1) in beef and rat kidneys was excluded by both ion-exchangers. A2 in all tissues was retained on DEAE-cellulose, but not on CM-cellulose. Both A1 and A2 in rat liver and beef kidney, A1 from rat submaxillary gland and A2 from beef liver were precipitated by antibodies to rat and beef liver arginases. None of the forms in rat kidney (A1, A2, A3 and A4) showed any cross-reactivity to either antibody. Rat submaxillary gland A2 was precipitated by anti-rat liver arginase, but activated by anti-beef liver arginase. While the major molecular forms were A1 in rat liver and submaxillary gland and A2 in beef liver and rat kidney, the two forms occurred in equal proportions in beef kidney. It appears that different isoforms might function as components of the urea cycle in the liver of different mammals and of the arginine catabolic pathway in different extrahepatic tissues.  相似文献   

7.
The adult patterns of arginase isoenzymes in rat intestine, kidney, and brain are nearly identical and consist of two forms, cationic A1 and anionic A4. In this paper, the organ-specific maturation of the enzyme equipment in these tissues is reported. The activity of arginase in all tissues studied could be detected on the 13th to 16th days of gestation. In fetal intestine and kidney the arginase activity is low, and persists up to the weaning time when the rapid, 10-fold rise of the enzyme activity occurs. However, the adult pattern of arginase isoenzymes in these tissues is accomplished in different ways. In the intestine, arginase A1 appears in fetal life and is the only form of the enzyme till the 19th to 21st days of postnatal life when the second form of arginase, A4, appears and rapidly accumulates, being exclusively responsible for the rise of the total enzyme activity at the time of weaning. In kidney, arginase A1 alone is present in the early fetal period. Arginase A4 appears 3-4 days before birth and its activity persists unchanged within the first 2 weeks of postnatal life. The intensive rise in total specific activity of kidney arginase at weaning is due to the accumulation of preexisting arginase A4. In brain, the adult pattern of arginase isoenzymes is achieved earlier than in other tissues. Both forms, A1 and A4, occur on Days 13-14 of gestation.  相似文献   

8.
Recombination of subunits of rat liver arginase A1 and rat kidney arginase A4 yielded a product which in polyacrylamide gel electrophoresis and DEAE-cellulose chromatography separated into five proteins with arginase activity. Proteins I and V corresponded in polyacrylamide gel-electrophoresis, DEAE-cellulose chromatography and immunological properties to the parental forms A1 and A4, respectively. Formation of five arginase hybrids proved the tetrameric structure of native arginases.  相似文献   

9.
Isoforms of arginase in the liver and kidney tissues of the ureotelic frog (Rana tigerina) and uricotelic lizard (Calotes versicolor) were fractionated by DEAE-cellulose chromatography (pH 8.3). Four molecular forms, designated as A'1, A2, A3 and A4 based on the KCl concentration required for their elution from the ion-exchange column, were detected in lizard liver, while only two forms were found in lizard kidney (A3 and A4) and frog liver and kidney (A2 and A3). No major differences were found in the pH optimum, substrate affinity and molecular weight of the isoenzymes. The isoforms in lizard tissues were either totally unaffected or only partially immunoprecipitated by antibodies raised against rat liver and beef liver arginases, but those in frog tissues were significantly activated by the two antibodies. While the physiological importance of the presence of four isoforms in lizard liver remains enigmatic, different sets of isoenzymes were present in the liver of the two ureotelic vertebrates, rat and frog. Hence, it appeared that a given mode of nitrotelism was not associated with a specific set of isoenzymes. Also, the data were not consistent with the generally held view that a basic isoform of arginase served as a component of the urea cycle in liver and a neutral/slightly acidic form functions in the synthesis of proline, glutamate and polyamines in extra-hepatic tissues. The isoforms appeared to show considerable functional overlap.  相似文献   

10.
Summary Arginase (EC 3.5.3.1), the final enzyme in the urea cycle, catalyzes the cleavage of arginine to orthinine and urea. At least two forms of this enzyme, Al and All, have been described and are probably encoded by discrete genetic loci. The expression of these separate genes has been studied in mammalian cells grown in culture. The permanent rat-hepatoma line H4-II-E-C3 contained exclusively the Al enzyme; the form in mammals comprising about 98% of the arginase activity in liver and erythrocytes but catalyzing only about one half of that reaction in kidney, gastrointestinal tract, and brain. By contrast, human-embryonic-kidney and -brain cells, after transformation with the human papovavirus BK, contained only the All species of arginase, which form contributes the remaining half of that catalysis in those mammalian tissues in vivo. We report here the results of an extensive study on the properties of these two forms of arginase in the three cell lines, including Km values for arginine, behavior on polyacrylamide gels under non-denaturing conditions, and cross-reactivity with lapine antibodies against the arginases from either rat or human liver.[/p]Presented in part at the annual meeting of the Society for Pediatric Research, Washington, D.C., May, 1982. Pediatr. Res. 16:195A.  相似文献   

11.
Arginase deficiency is an inborn error of the last step in the urea cycle and leads to profound hyperargininemia. The enzyme deficiency has been demonstrated in the liver and red blood cells. In cultured patient fibroblasts, the activity is normal. Arginase exists in multiple molecular forms only one of which is missing in hyperargininemic patients. In fibroblasts, three arginase isoenzymes can be demonstrated by DEAE-cellulose column chromatography, two by electrophoresis and by immunoprecipitation methods. From the present data, it is improbable that part of the A1 isoenzyme in fibroblasts originates from fetal calf serum arginase which supplements the culture media. None of the techniques for the separation and analyses of arginase isoenzyme allows to differentiate between the normal and the arginase-deficient phenotype. A possible explanation would be that the defect in A1 arginase observed in the liver is the result of a regulatory defect.  相似文献   

12.
Five immunologically different forms of arginase were evidenced in rat tissues by the double diffusion test and immunoelectrophoresis. New symbols for these arginases are proposed (beginning with the most anionic forms): A1 (kidney), A2 (liver), A3 (salivary glands), A4 (kidney) and A5 (liver). Arginases A1 from kidney and A5 from liver are paternal forms built of one-type subunits. Subunits of form A1 exhibit a non-identity cross-reaction with subunits of form A5. Arginases A2, A3 and A4 are hybrids composed of both kinds of subunits.  相似文献   

13.
Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed.  相似文献   

14.
1. Arginase was found to be present in the intestine in all species of Annelida, Arthropoda and Chordata studied. 2. The activity of intestinal arginase differs from species to species, the differences reaching two orders of magnitude (100 x). 3. The highest activity of intestinal arginase was observed in the rodents (mouse, rat, hamster). 4. In animals in which the enzyme activity was high or moderately high, arginase activity showed topographical differentiation along the long axis of the intestine.  相似文献   

15.
Cadmium ion activates arginase from many species of organisms but is an inhibitor of arginase from many other species. The purpose of this study was to investigate the inhibition of rat liver and kidney arginase by cadmium ion. Rat kidney arginase was inhibited by much lower concentrations of cadmium ion than rat liver arginase. Cadmium ion was a mixed noncompetitive inhibitor of both rat liver and kidney arginase. Cadmium ion enhanced the substrate activation of rat kidney arginase while still inhibiting the enzyme. Cadmium ion prevented the substrate inhibition of rat kidney arginase by fluoride while still inhibiting the enzyme. Cadmium ion also inhibited rat kidney arginase in the presence of manganese ion.  相似文献   

16.
Cadmium ion activates arginase from many species of organisms but is an inhibitor of arginase from many other species. The purpose of this study was to investigate the inhibition of rat liver and kidney arginase by cadmium ion. Rat kidney arginase was inhibited by much lower concentrations of cadmium ion than rat liver arginase. Cadmium ion was a mixed noncompetitive inhibitor of both rat liver and kidney arginase. Cadmium ion enhanced the substrate activation of rat kidney arginase while still inhibiting the enzyme. Cadmium ion prevented the substrate inhibition of rat kidney arginase by fluoride while still inhibiting the enzyme. Cadmium ion also inhibited rat kidney arginase in the presence of manganese ion.  相似文献   

17.
Arginase, which catalyzes the conversion of arginine to urea and ornithine, and consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Arginine is also used for the synthesis of nitric oxide and creatine phosphate, while ornithine is used for the synthesis of polyamines and proline, and thus collagen. Arginase II mRNA and protein are abundant in the intestine (most abundant in the jejunum and less abundant in the ileum, duodenum, and colon) and kidney of the rat. In the kidney, the levels of arginase II mRNA do not change appreciably from 0 to 8 weeks of age. In contrast, arginase II mRNA and protein in the small intestine are not detectable at birth, appear at 3 weeks of age, the weaning period, and their levels increase up to 8 weeks. On the other hand, mRNAs for ornithine aminotransferase (OAT), ornithine decarboxylase, and ornithine carbamoyltransferase (OCT) are present at birth and their levels do not change much during development. Arginase II is elevated in response to a combination of bacterial lipopolysaccharide, dibutyryl cAMP, and dexamethasone in the kidney, but is not affected by these treatments in the small intestine. Immunohistochemical analysis of arginase II, OAT, and OCT in the jejunum revealed their co-localization in absorptive epithelial cells. These results show that the arginase II gene is regulated differentially in the small intestine and kidney, and suggest different roles of the enzyme in these two tissues. The co-localization of arginase II and the three ornithine-utilizing enzymes in the small intestine suggests that the enzyme is involved in the synthesis of proline, polyamines, and/or citrulline in this tissue.  相似文献   

18.
Purification and properties of arginase of rat kidney   总被引:7,自引:1,他引:6       下载免费PDF全文
l-Arginase from rat kidney was partially purified and some properties were compared with those of l-arginase of rat liver. The kidney enzyme was firmly bound to the mitochondrial fraction and after solubilization required arginine or an unknown factor in tissue extracts for stabilization after dialysis. The two enzymes differed also in stability with respect to acetone treatment, heating or freezing. In further contrast with liver arginase, arginase from kidney was not adsorbed to CM-cellulose at pH7.5 and its activity was not increased by incubation with Mn(2+). Other differences were seen in relative specificities for substrates, ratio of hydrolysis rates with high and low concentrations of arginine and effects of certain inhibitors. Antisera prepared to pure liver arginase did not cross-react with partially purified kidney arginase.  相似文献   

19.
1. A total of 450 fertilized eggs were used to study the concentrations of uric acid, urea and ammonia in allantoic and amniotic fluids, and some enzymes of nitrogen metabolism in the liver and kidney during the development of the chick embryo from the 5th to 21st day of incubation. 2. Concentrations of the compounds studied were higher in allantoic fluid. The molar concentration of allantoic uric acid increased steadily with time. The pattern of urea and ammonia in both allantoic and amniotic fluids were the same. 3. Arginase (E.C.3.5.3.1) activity in both embryonic kidney and definitive kidney was higher than that in the liver. The specific activity of arginase (mumole urea formed/hr per g wet wt kidney) dropped during development. 4. Little arginine synthetase activity (argininosuccinate synthetase, E.C.6.3.4.5; and argininosuccinate lyase, E.C.4.3.2.1) was found in kidney, but none in the liver. 5. The complete urea cycle function was absent in both the liver and the kidney of the chick embryo.  相似文献   

20.
A human liver cDNA library was screened by colony hybridization with a rat liver arginase cDNA. The number of positive clones detected was in agreement with the estimated abundance of arginase message in liver, and the identities of several of these clones were verified by hybrid-select translation, immunoprecipitation, and competition by purified arginase. The largest of these human liver arginase cDNAs was then used to detect arginase message on northern blots at levels consistent with the activities of liver arginase in the tissues and cells studied. The absence of a hybridization signal with mRNA from a cell line expressing only human kidney arginase demonstrated the lack of homology between the two human arginase genes and indicated considerable evolutionary divergence between these two loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号