首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of exogenous folic acid (FA) on the productivity of Pisum sativum L. and Hordeum vulgare L. have been studied. After flowering, the plants were treated with optimum concentration of FA (25 mg per 1 water). This treatment increased the weight of the seeds by 17-19% (samplings of 1000 pcs were compared), whereas the yield became 26-29% higher. Amino acid analysis revealed a notable increase in the content of folate-dependent amino acids (e.g., glutamate, glycin, and methionine). Analysis of total folate content demonstrated that tetrahydrofolic coenzymes were significantly increased in experimental seeds. Treatment of the plants with exogenous FA increased both the content of chlorophyll in the leaves and their continuance of function. The results obtained led to the conclusion that FA treatment increases the productivity of pea and barley, by affecting the yield, weight, and quality of the seed.  相似文献   

2.
The present investigation envisaged revealing the role of exogenous application of ascorbic acid in increasing resistance against NaCl stress. Shoot apices from 60-d-old, in vitro-grown plants of two commercially important cultivars of Solanum tuberosum L., cvs. Desiree and Cardinal, were inoculated on Murashige and Skoog (MS) medium supplemented with 0.5 mM ascorbic acid for 72 h as a pretreatment. Pretreated and non-pretreated shoot apices were transferred to MS medium containing different concentrations of NaCl (0–140 mM; eight treatments). Results were recorded for morphological (shoot length, shoot number, root length, root number, and number of nodes) and biochemical features (protein, peroxidase, catalase, and superoxide dismutase activities) after 60 d of salt treatment. Similarly, 60-d-old, well-proliferated callus cultures were also pretreated with ascorbic acid for 24 h and transferred to an optimized callus proliferation medium containing different concentrations of salt. Results were recorded after 60 d of salt treatment for percentage relative fresh weight growth and biochemical parameters. Salinity severely inhibited all the growth parameters in both the cultivars. Pretreatment with ascorbic acid to both salt-treated plants and callus cultures showed significant differences with respect to almost all of the growth and biochemical parameters studied. Protein content as well as catalase and superoxide dismutase activities increased significantly in both the cultivars, although peroxidase activity showed a decreasing trend in ascorbic acid-pretreated plants as well as callus cultures.  相似文献   

3.
Changes in dietary composition and its effects on the fatty acid (FA) composition of young-of-the-year (YOY) pumpkinseed (Lepomis gibbosus) from an artificial reservoir (Mirgenbach—northeastern France) were related to body size as shown by stomach content and FA analyses. Comparisons were made between three size classes of fishes: 25–35 mm total length (TL), 35–45 mm TL and 45–55 mm TL. Diets of the youngest L. gibbosus (TL ≤ 35 mm) consisted mainly of zooplanktonic microcrustaceans and Chironomidae. Ontogenetic development influenced the FA composition of L. gibbosus. Older YOY L. gibbosus showed an increase in proportions of monounsaturated FA proportions and a decrease in polyunsaturated FA and mainly essential FA (particularly docosahexaenoic acid). The low ω3/ω6 ratio and low PUFA content (mainly on DHA) suggested that L. gibbosus would not transfer the benefits of consuming ω3 PUFA up the food web.  相似文献   

4.
A rapid and efficient micropropagation system was developed for Psoralea corylifolia, an endangered, valuable medicinal plant. Multiple shoot buds were obtained in half-strength liquid Phillips–Collins (L2) medium supplemented with 5 μM benzylaminopurine (BA) and 5 μM thidiazuron (TDZ) from apical bud explants of 1-week-old cultures. The shoot buds were subcultured on enriched solid L2 medium supplemented with different concentrations and combinations of BA, kinetin (KIN), 2-isopentenyladenine (2iP), TDZ, bavistin (BVN) and trimethoprim (TMP). Enriched solid L2 medium supplemented with 2 μM BA, 1 μM TDZ and 100 mg l−1 BVN were more effective in producing greater number of shoots per explant (85.2 ± 0.9 shoots/explant) after 4 weeks of culture. The regenerated shoots (40–50 mm in length) rooted and accompanied by hardening upon transfer to 50 μM indole-3-butyric acid (IBA) for 15 min and followed by planting in sterile soil mixture and vermiculate (3:1 v/v), with 50 ml of one-eight strength L2 basal salt solution devoid of sucrose and inositol, supplemented with 5 μM IBA and 100 mg l−1 BVN. The plants achieved 100% rooting with hardening. Subsequently the rooted plants were successfully established in the field. The survival percentage differed with seasonal variations. The concentration of psoralen was evaluated in different tissues of ex vitro and in vivo grown plants by high-performance liquid chromatography (HPLC). Psoralen content was increased in leaves (2.97%), roots (2.38%), stems (5.40%) and seeds (1.63%) of ex vitro plants than the in vivo plants. This system facilitates for commercial and rapid propagation of P. corylifolia for conservation strategies and phytomedicine production.  相似文献   

5.
Summary Between 3 Nov. 1983 and 9 Apr. 1984, six applications of fertiliser N (ammonium, nitrate or urea) were given to four autumn sown (26 Oct. 1983)Vicia faba L cultivars, Banner Winter (BW) and Maris Beagle (MBg), cold tolerant cultivars normally sown in the autumn, and Herz Freya (HF) and Maris Bead (MBd), cold sensitive cultivars more commonly sown in the spring. The effects of additional N were determined by comparison with plants given zero-N (controls). Application of N, regardless of form, had no effect on % emergence at the first sampling (15 Dec. 1983); >90% for BW, MBg and HF, but only 40–60% for MBd. At this time the dry weight, carbon content and nitrogen content of all cultivars was approximately 20% less than that of the seed on planting. No more plants emerged after 15 Dec. 1983. Between 15 Dec. 1983 and 20 Feb. 1984, all cultivars, regardless of N treatment, showed little change in dry weight, carbon content and nitrogen content but the proportion of total plant dry weight, carbon content and nitrogen content in the cotyledons decreased while the proportions in root, stem and leaf tissue increased. On 20 Feb. 1984 there were no N effects. All cultivars but especially BW and MBg, showed progressive increases in dry weight, carbon content and nitrogen content during the period 20 Feb. 1984 to 8 May 1984. Pooled results for all four cultivars indicated that on 8 May 1984, plants given ammonium and urea had a greater dry weight, carbon content and nitrogen content than controls. At harvest (1–3 Sep. 1984), BW and MBg outyielded (g dw seed m−2) HF and MBd. Pooled results for all cultivars indicated that application of N regardless of form gave increased yield and an increased N concentration (mg N g−1 dw) in the seed.  相似文献   

6.
The study was focused on fatty acid (FA) composition of lipids from the seedlings and roots of crops having different cold resistance and grown at 27°C or 4°C. Biosynthesis of FA in the lipids of seedlings and roots of cold-susceptible maize (Zea mays L.) at both growth temperatures was controlled by chloroplast ω6 desaturase and microsomal ω6 desaturase, respectively. The content of linoleic acid was 56.2% and 43.3% in the coleoptiles of maize seedlings grown at 4 and 27°C, respectively, and in the roots it was 52.2% and 38.5%, respectively. The content of α-linolenoic acid in the coleoptiles was 6.7–6.8% at both temperatures, while in the root lipids it was higher at low temperature (3.15% at 27°C vs. 4.7% at 4°C). FA biosynthesis in the seedling coleoptiles of wheat (Triticum aestivum L.) and Siberian wild rye (Elymus sibiricus L.) grown at low temperature was controlled by the chloroplast ω3 desaturase. A minor increase in the content of α-linolenoic acid was observed at low temperature: 29.7% to 30.2% in wheat and 22.8% to 25.8% in wild rye. In the root tissues of these species, the biosynthesis of α-linolenoic acid was controlled by the microsomal ω3 desaturase. The content of α-linolenoic acid was higher at low temperature: in wheat it was 6.1% at 27°C and 17.1%, and 4°C, while in Siberian wild rye, 7.1% and 12.0% at 4 and 27°C, respectively.  相似文献   

7.
 A protocol for plant regeneration from mesophyll/protoplasts of sorghum [Sorghum bicolor (L.) Moench] was developed. The yield of intact protoplasts, their subsequent divisions and regeneration were genotype-dependent. The genotype 296B was always more responsive than IS 32266. For 296B, the sixth leaf from 18-day-old plants kept in dark for 2 days before harvesting was found to be the most suitable source of viable protoplasts. The first division was observed 10–12 days after plating, and the second division after 12–14 days. The maximum plating efficiency was 4.8% in 296 B, followed by 2.48% in IS 32266. Microcolonies were visible after 25–30 days, and microcalli after 60–75 days. Whole plants were obtained after 6–8 weeks of culture of microcalli on MS medium containing 0.2 mg l–1 kinetin and 2 mg l–1 BAP. The frequency of regeneration in 296B and IS 32266 was 12.80% and 10.58%, respectively. Ten plants transferred to pots in the glasshouse established well. The seeds collected from glasshouse-grown plants were sown in the field where plants were grown to maturity. Received: 7 October 1998 / Revision received: 13 January 1999 / Accepted: 20 January 1999  相似文献   

8.
Cell suspension cultures of potato (Solanum tuberosum, cv. Tamasha) were treated with fusaric acid (FA), a nonspecific fungal toxin produced by Fusarium species to study the effects of FA on H2O2 generation, lipid peroxidation, and activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase, and ascorbate peroxidase (APX). The toxicity of various FA doses was evaluated from viability of cultured cells of S. tuberosum. The toxic concentration of FA (10−3 M) reduced cell viability by 32% after 48-h incubation and induced alkalinization of the medium; the nontoxic concentration of FA (10−6 M) had no effect on cell viability and pH of the culturing medium. The treatment of cells with FA caused rapid reversible accumulation of H2O2 in cells, promoted lipid peroxidation, and elevated the activity of antioxidant enzymes. The toxic FA concentration elevated the intracellular H2O2 content by 51–59% and stimulated lipid peroxidation rate by 35–40%. The nontoxic FA concentration raised the H2O2 content by 84–91% and enhanced lipid peroxidation rate by 18–24%. The addition of FA induced transient biphasic induction of the antioxidant enzymes; the action of toxic and nontoxic concentrations differed in terms of the response amplitudes and dynamics. The results confirm the well-known toxic impact of high doses of FA on the cultured cells, which is determined by membrane transport disorders. In addition, the results reveal that toxic and nontoxic concentrations of FA are able to induce pro- and antioxidant systems in the cultured cells of S. tuberosum.  相似文献   

9.
10.
Culture conditions of Schizochytrium limacinum SR21 for the purpose of microbial docosahexaenoic acid (DHA) production were investigated. The strain SR21 showed a wide tolerance to salinity; that is, the optimum salinity was between 50% and 200% that of sea water. Monosaccharides (glucose and fructose) and glycerol supported good cell growth and DHA yield. Di- and polysaccharides, oleic acid, and linseed oil gave low DHA yields. A high content of DHA (more than 30% of total fatty acids) was obtained from culture on glucose, fructose, and glycerol, and also the strain had simple polyunsaturated fatty acid profiles. The major polyunsaturated fatty acids other than DHA were n-6 docosapentaenoic acid only, and the contents of icosapentaenoic acid and arachidonic acid were less than 1%. Using corn steep liquor as a nitrogen source, a high total fatty acid content was obtained. The total fatty acid content in the dry cell weight increased as the concentration of the nitrogen source decreased, reached more than 50%. An increase in carbon source concentration led to a high DHA yield. A maximum DHA yield of more than 4 g/l was obtained in both glucose and glycerol media at 9% and 12% respectively. S. limacinum SR21 was thought to be a promising resource for microbial DHA production yielding a good level of productivity as well as a simple polyunsaturated fatty acid profile. Received: 26 June 1997 / Received revision: 29 August 1997  / Accepted: 19 September 1997  相似文献   

11.
ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed strength. The Escherichia coli mutant glgC gene (glgC16), which encodes a highly active and allosterically insensitive AGPase, was introduced into maize (Zea mays L.) under the control of an endosperm-specific promoter. Developing seeds from transgenic maize plants showed up to 2–4-fold higher levels of AGPase activity in the presence of 5 mM inorganic phosphate (Pi). Transgenic plants with higher cytoplasmic AGPase activity under Pi-inhibitory conditions showed increases (13–25%) in seed weight over the untransformed control. In addition, in all transgenic maize plants, the seeds were fully filled, and the seed number of transgenic plants had no significant difference compared with that of untransformed control. These results indicate that increasing cytoplasmic AGPase activity has a marked effect on sink activity and, in turn, seed weight in transgenic maize plants.  相似文献   

12.
In this paper we assess the relative contributions to total pod yield of cohorts of flowers of known age. Bean plant (Phaseolus vulgaris L.) growth was monitored and 'births' of individual flowers were recorded and their fates followed. For every cohort of flowers an array of yield measures was calculated, including the mean and total cohort dry weight of fruits, and the numbers of viable and aborted seeds and completely undeveloped ovules. When mature, pods were removed from half of the plants. Plants whose mature pods were removed produced significantly greater numbers of flowers, ovules and viable seeds and a greater total weight of pods than did untreated plants. However, the proportion of ovules giving rise to viable seeds and to aborted seeds and undeveloped ovules was the same in plants of both groups. Approximately 50% of ovules of marketable pods, in all plants, yielded viable seeds. The 12 cohorts of flowers contributed markedly different amounts to plant yield. Early and later cohorts contributed much less than did middle cohorts in terms of marketable pod dry weight and numbers of fully developed seeds, aborted seeds, and undeveloped ovules. Peak productivity was therefore obtained from the middle phase of flowering in these annual bean plants. The lower pod yield of later cohorts is interpreted as a result of competition for limited resources between maturing pods and new flowers. We consider possible causes for the various fates of flowers and ovules and discuss flowers as plant modules suitable for demographic examination.  相似文献   

13.
 The design of optimum sampling strategies integrating criteria of efficiency relevant to multilocus models and many target populations has been investigated with respect to the number of plants and the number of seeds per plant to be sampled for a Lima bean (Phaseolus lunatus L.) gene pool. This study, using five populations and six polymorphic enzyme loci, shows that the number of plants rather than the number of seeds collected per plant primarily determines the success of seed sampling, suggesting that plant number plays an essential part in maintaining the allelic multiplicity of predominantly selfing species like Lima bean. According to the results, it appears that among Lima bean populations an efficient sampling procedure is achieved by collecting 1–4 seeds from 200 to 300 plants. These sample sizes will retain 8–10 alleles, regardless of their frequencies. When we consider polymorphism at the 5% level, it is expected that sampling 10–80 plants will collect combinations of 4–8 alleles. Based on data from genetic and demographic studies, we suggest an efficient sampling scheme for Lima bean germplasm at both population and geographical levels. Received: 10 March 1998 / Accepted: 1 April 1998  相似文献   

14.
The fermentation kinetics of Lactobacillus plantarum were studied in a specially designed broth formulated from commercially available, dehydrated components (yeast extract, trypticase, ammonium sulfate) in batch and continuous culture. During batch growth in the absence of malic acid, the specific growth rate was 0.20 h–1. Malic acid in the medium, at 2 mM or 10 mM, increased the specific growth rate of L. plantarum to 0.34 h–1. An increase in the maximum cell yield due to malic acid also was observed. Malic acid in the medium (12 mM) reduced the non-growth-associated (maintenance energy) coefficient and increased the biomass yield in continuous culture, based on calculations from the Luedeking and Piret model. The biomass yield coefficient was estimated as 27.4 mg or 34.3 mg cells mmol–1 hexose in the absence or presence of malic acid, respectively. The maintenance coefficient was estimated as 3.5 mmol or 1.5 mmol hexose mg–1 cell h–1 in the absence or presence of malic acid. These results clearly demonstrate the energy-sparing effect of malic acid on the growth- and non-growth-associated energy requirements for L. plantarum. The quantitative energy-sparing effect of malic acid on L. plantarum has heretofore not been reported, to our knowledge.  相似文献   

15.
The impact of ambient solar UV was studied on the photosynthesis and yield of cotton (Gossypium hirsutum) var. Vikram in a field experiment by excluding either UV-B (<315 nm) or UV-B/A (<400 nm) components of solar spectrum. Cotton plants were grown in cages covered with polyester filters that could specifically cut off UV-B or UV-B/A part of the solar spectrum. The control plants were grown under a filter transmissible to UV. Exclusion of UV enhanced plant height, leaf area, total biomass, and the yield parameters (number and weight of bolls, length of fiber and number of seeds) of cotton. Enhancement in the vegetative growth and yield of the plants could be related to enhanced rate of photosynthesis in the leaves. Polyphasic chlorophyll a fluorescence (OJIP) transients from UV excluded plants gave a higher fluorescence yield at I–P phase. Fluorescence measurements indicated enhanced F v/F m ratio and reduction capacity after exclusion of solar UV. Exclusion also enhanced stomatal conductance and intercellular CO2 concentration and reduced the stomatal resistance. Total soluble proteins were higher after UV exclusion, and in SDS–PAGE analysis, bands corresponding to smaller subunits (14 kDa) of Rubisco were more intensely stained. Experiments indicated suppressive action of ambient UV on carbon fixation and yield of cotton plants. Exclusion of solar UV proved to be beneficial in enhancing the yield of cotton plants.  相似文献   

16.
 Stearic acid is one of the two saturated fatty acids found in soybean [Glycine max (L.) Merr.] oil, with its content in the seed oil of commercial cultivars averaging 4.0%. Two mutants, KK-2 and M25 with two- and six-fold higher stearic acid contents in the seed oil than cv ‘Bay’, were identified after X-ray seed irradiation. Our objective was to determine the genetic control of high stearic acid content in these mutants. Reciprocal crosses were made between each mutant and ‘Bay’, and between the two mutants. No maternal effect for stearic acid content was observed from the analysis of F1 seeds in any of the crosses. Low stearic acid content in ‘Bay’ was partially dominant to high stearic acid content in KK-2 and M25, and high stearic acid content in KK-2 was partially dominant to high stearic acid content in M25. Cytoplasmic effects were not observed, as demonstrated by the lack of reciprocal cross differences for stearic acid content in our analysis of F2 seeds from F1 plants. The stearic acid content in F2 seeds of KK-2בBay’ and M25בBay’ crosses segregated into three phenotypic classes which satisfactorily fit a 1:2:1 ratio, indicating that high stearic acid content in KK-2 and M25 was controlled by recessive alleles at a single locus. The data for stearic acid content in F2 seeds of the KK-2×M25 cross satisfactorily fit a 3:9:1:3 phenotypic ratio. The F2 segregation ratio and the segregation of F3 seeds from individual F2 plants indicated that KK-2 and M25 have different alleles at different loci for stearic acid content. The alleles in KK-2 and M25 have been designated as st 1 and st 2, respectively. The stearic acid content (>30.0%) found in the st 1 st 1 st 2 st 2 genotype is the highest known to date in soybean, but it was not possible to develop the line with this genotype because the irregular seeds failed to grow into plants after germination. Therefore, tissue culture methods must be developed to perpetuate this genotype. Received: 28 March 1997 / Accepted: 18 April 1997  相似文献   

17.
Summary Chile pepper (Capsicum annuum L.) plants were regenerated from cotyledon explantsin vitro in four major stages: bud induction, bud enlargement, shoot elongation, and root development. Bud induction medium contained 0.5 mg/L (2.9μM) indole-3-acetic acid and 2 mg/L (8.9 μM) N6-benzyladenine. Bud enlargement occurred, and an occasional shoot appeared when medium with 2 mg/L (6μM) gibberellic acid, 2 mg/L (8.9 μM) N6-benzyladenine, and 5 mg/L (29.4 μM) silver nitrate was used. Most shoots elongated after placement on a third medium without plant growth regulators or on fresh plates of bud enlargement medium. Incubations were for 2, 2, and 4 weeks, respectively, at 28.5°C and continuous light. Treatment with silver nitrate was necessary for multiple shoot production and elongation to occur in the third culture stage and was most effective when present in the second-stage medium but not in the bud induction medium. Sixteen to 26% of the shoots rooted in medium with 1 mg/L (5.4 μM) 1-naphthaleneacetic acid after 1 month. Additional shoots transferred to a second rooting medium with 0.1 or 1.0 mg/L (0.54 or 5.4 μM) 1-naphthaleneacetic acid developed roots, increasing the overall rooting efficiency to 70–72%. Most rooted shoots grew well and produced viable seeds when grown in the greenhouse. Other cytokinins tested for plant regeneration were zeatin and thidiazuron. Zeatin induced few shoots and fewer well-developed plants. Thidiazuron induced multiple shoots 4 months after culture began, but many were small and did not elongate further. Phytagar tissue culture grade proved superior to other agars tested, increasing bud induction frequency from 0-33% to 80–93% and eliminating explant hyperhydricity.  相似文献   

18.
19.
We studied the effects of weak permanent homogenous hirizontal magnetic field (PMF) (400 A/m) on the composition and content of lipids and composition of their fatty acids (FAs) in radish (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) seedlings at temperatures of 20 and 10°C. We compared lipid composition and content in seedlings at the phase of developed cotyledons (20°C, 5-day-old, and 10°C, 8-day-old seedlings) under low light and in darkness with the lipid composition and content in dry seeds. The seedlings grown in geomagnetic field (GMF) served as a control. In dry seeds, about 99% of total lipids comprised neutral lipids (NL) and only 1% were polar lipids (PL). Triacylglycerols predominated among NL comprising 93% of total seed lipids. During seed germination, NLs were consumed and PL were produced: the amount of glycolipids increased in control by 3.5–5 times and the amount of phospholipis, by 1.5–2 times.In the light at 20°C, PMF suppressed the formation of PL (by 18%), whereas in darkness, it stimulated it approximately by 80% as compared with control. In the light at 10°C, PMF slightly stimulated PL formation; in darkness, it did not almost affect their synthesis. In all treatments, PMF increased the ratio of phospholipids to sterols by 30–100%. Among FA, PMF exerted the strongest effect on the content of erucic acid: it increased in the light and in darkness at 20°C approximately by 25% and decreased at 10°C in the light by 13%. PMF behaved as a correction factor affecting lipid metabolism on the background of light and temperature action.  相似文献   

20.
Growing barley (Hordeum vulgare L.) plants for 7 days on NaCl solutions (20–200 mM) decreased chlorophyll (Chl) a and b content with respect to that in untreated control plants. The content of free proline and the plant ability to synthesize 5-aminolevulinic acid (ALA) started to increase in parallel at salt concentrations of 20–50 mM. The maximum amount of ALA accumulated in plants grown at 100 mM NaCl was twofold higher than in control plants grown on fresh water. In this case the proline content increased 2.8-fold. On further increase in salt concentration, the rate of ALA accumulation decreased, approaching control values at 150 mM NaCl; even lower rates were observed at 200 mM NaCl. The reduced ability to synthesize ALA was accompanied by an increase in proline content. The albino tissue of plants treated at the seed stage with the antibiotic streptomycin lost its ability to synthesize ALA needed for Chl formation. The proline content in the albino tissue was tenfold higher than in control green plants and was 30-fold higher when the plants were grown on solutions with 100 mM NaCl. No effect of NaCl on ALA-dehydratase activity was noted. As NaCl concentration was raised, there occurred the decrease in magnesium chelatase activity, accumulation of reactive oxygen species (ROS), the increase in ascorbate peroxidase activity, and a slight decrease in lipid peroxidation level. Growing plants in the presence of 150 mM NaCl and 10 or 60 mg/l exogenous ALA led to the increase in proline content (by a factor of 1.8 and 4.2, respectively) and to the decrease in ROS content, in comparison with plants grown on salt solutions without ALA. Furthermore, in the presence of exogenous ALA, the parameters of seedling growth became similar to those of NaCl-untreated plants. The role of ALA in plants as an antistress agent is considered. ALA is supposed to confer tolerance to salt stress by taking part in Chl and heme biosynthesis and also through functioning as a plant growth regulator. A hypothesis is put forward that the impairment of ALA-synthesizing ability may redirect metabolic conversions of glutamic acid from Chl and heme synthesis to the proline synthesis pathway, which would stimulate proline biosynthesis and improve salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号