首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Corallinales includes ca. 40 genera of calcified red seaweeds. Species are of two distinct morphotypes; those that possess genicula (uncalcified nodes) and those that lack genicula. Most nongeniculate species take the form of crusts. The presence (or absence) of genicula, secondary pit connections, and tetrasporangial conceptacle features have traditionally been used as key characters for delimiting coralline subfamilies. In this study, nuclear encoded 18S and 26S rRNA gene sequences were determined and used to reexamine relationships among coralline taxa. Separate and combined phylogenetic analyses of these data yielded similar trees in which four major lineages are resolved. Heydrichia and Sporolithon (Sporolithaceae) are positioned at the base of the tree and appear to be distantly related to other species examined. Within the Corallinaceae, the nongeniculate Melobesioideae is resolved as a monophyletic group. All members of this subfamily produce mutiporate tetraspoangial conceptacles. The Corallinoideae, which are characterized by unizonate genicula, are resolved as sister to a clade containing species placed in the Lithophylloideae, Mastophoroideae and Metagoniolithoideae. The molecular data indicate that geniculate and nongeniculate species characterized by the presence of secondary pit connections are closely related. For example, both data sets robustly support a sister taxon relationship between Amphiroa and Titanoderma. Our results indicate that: 1) all taxa in which secondary pit connections are present should be referred to the Lithophylloideae and, 2) genicula are nonhomologous structures that are independently derived in Amphiroa, Lithothrix, Metagoniolithon and the last common ancestor of the Corallinoideae.  相似文献   

2.
Conflicting classifications for the Corallinales were tested by analyzing partial sequences for the nuclear small-subunit ribosomal RNA (SSU) gene of 35 species of coralline algae. Parsimony and likelihood analyses of these data yielded congruent hypotheses that are inconsistent with classifications for the group that include as many as eight subfamilies. Four major clades are resolved within the order, including the early-diverging Sporolithaceae as well as the Melobesioideae and Corallinoideae. The fourth clade, which is supported robustly, includes both nongeniculate and geniculate species classified in the subfamilies Mastophoroideae, Metagoniolithoideae, Lithophylloideae, and Amphiroideae. Molecular and morphological data support the proposal that the latter two subfamilies are sister taxa. Although relationships among some genera are not resolved clearly, the order of branching of taxa among and within the four principal lineages is concordant with paleontological evidence for the group. Relationships inferred among genera within each of the clades is discussed. Seven morphological characters delimiting higher taxonomic groups within the order were combined with the sequence data, analyzed, and optimized onto the resulting tree(s). Except for the presence or absence of genicula, all other characters were found to be phylogenetically informative. Genicula are nonhomologous structures that evolved independently in the Amphiroideae, Corallinoideae, and Metagoniolithoideae. The phenetic practice of separating coralline algae into two categories solely on the basis of the presence or absence of genicula does not accurately reflect the evolutionary history of the group.  相似文献   

3.
The parasitic, nongeniculate, coralline red alga Ezo epiyessoense (Rhodophyta, Corallinaceae) was described in 1974 by Adey, Masaki & Akioka on the basis of specimens growing on Lithophyllum yessoense in Japan. The authors considered Ezo to be an adelphoparasite because it resembled its host taxonomically in being a member of the coralline subfamily Lithophylloideae. The species had not been recorded outside Japan until the present observation in England where it was found growing on another lithophylloid species, Titanoderma pustulatum. The structure of the English material of E. epiyessoense is described and shown to closely resemble that of the type material despite its occurrence on a different host species. Tetrasporangia and trisporangia are recorded for the first time in Ezo. A summary is given of known nongeniculate coralline parasites, semi-endophytes and outgrowths.  相似文献   

4.
Molecular phylogenetic analyses of 18S rDNA (SSU) gene sequences confirm the placement of Crusticorallina gen. nov. in Corallinoideae, the first nongeniculate genus in an otherwise geniculate subfamily. Crusticorallina is distinguished from all other coralline genera by the following suite of morpho‐anatomical characters: (i) sunken, uniporate gametangial and bi/tetrasporangial conceptacles, (ii) cells linked by cell fusions, not secondary pit connections, (iii) an epithallus of 1 or 2 cell layers, (iv) a hypothallus that occupies 50% or more of the total thallus thickness, (v) elongate meristematic cells, and (vi) trichocytes absent. Four species are recognized based on rbcL, psbA and COI‐5P sequences, C. painei sp. nov., the generitype, C. adhaerens sp. nov., C. nootkana sp. nov. and C. muricata comb. nov., previously known as Pseudolithophyllum muricatum. Type material of Lithophyllum muricatum, basionym of C. muricata, in TRH comprises at least two taxa, and therefore we accept the previously designated lectotype specimen in UC that we sequenced to confirm its identity. Crusticorallina species are very difficult to distinguish using morpho‐anatomical and/or habitat characters, although at specific sites, some species may be distinguished by a combination of morpho‐anatomy, habitat and biogeography. The Northeast Pacific now boasts six coralline endemic genera, far more than any other region of the world.  相似文献   

5.
The initiation of metamorphosis in marine invertebrates is strongly linked to the environment. Planktonic larvae typically are induced to settle and metamorphose by external cues such as coralline algae (Corallinaceae, Rhodophyta). Although coralline algae are globally abundant, invertebrate larvae of many taxa settle in response to a very limited suite of species. This specificity impacts population structure, as only locations with the appropriate coralline species can attract new recruits. Abalone (Gastropoda, Haliotidae) are among those taxa in which closely related species are known to respond to different coralline algae. Here we identify highly inductive natural cues of the tropical abalone Haliotis asinina. In contrast to reports for other abalone, the greatest proportion of H. asinina larvae are induced to settle and metamorphose (92.8% to 100% metamorphosis by 48 h postinduction) by articulated corallines of the genus Amphiroa. Comparison with field distribution data for different corallines suggests larvae are likely to be settling on the seaward side of the reef crest. We then compare the response of six different H. asinina larval families to five different coralline species to demonstrate that induction by the best inductive cue (Amphiroa spp.) effectively extinguishes substantial intraspecific variation in the timing of settlement.  相似文献   

6.
A new species of semi-endophytic coralline alga, Lithophyllum cuneatum (Corallinaceae: Lithophylloideae), is described from Fiji. The species is characterized by a wedge-like thallus that is partially buried in the thallus of the host coralline, Hydrolithon onkodes (Heydrich) Penrose et Woelkerling or occasionally Neogoniolithon sp., and that appears at the surface of the host as a small pustule that is usually paler in color than the host. The thallus consists of erect filaments that are derived from a single cell. The basal cell, when visible, is non-palisade, and areas of bistratose margin are absent. Cells of contiguous erect filaments are joined by secondary pit connections. Epithallial cells are present in 2–3 layers, and individual trichocytes are common. Gametangial plants are dioecious. Male conceptacles have simple spermatangial systems that are confined to the floors of their elliptical chambers. Carposporangial conceptacles contain 5–8 celled gonimoblast filaments that are borne at the margin of a more-or-less discoid fusion cell, and so occupy the periphery of the elliptical conceptacle chambers. Tetrasporangial conceptacles are uniporate, with roofs formed from peripheral filaments, and chambers lack a central columella of sterile filaments. Despite its semi-endophytic nature, haustorial cells are absent, and plastids and pigmentation are present.  相似文献   

7.
The evolution of uncalcified genicula in upright calcified corallines has occurred at least three times independently, resulting in articulated corallines within Corallinoideae, Lithophylloideae, and Metagoniolithoideae. Genicula confer flexibility to otherwise rigid thalli, and the localization of bending at discrete intervals amplifies bending stress in genicular tissue. Genicular morphology must, therefore, be balanced between maintaining flexibility while mitigating or resisting stress. Genicula in the three articulated lineages differ in both cellular construction and development, which may result in different constraints on morphology. By studying the interaction between flexibility and morphological variation in multiple species, we investigate whether representatives of convergently evolving clades follow similar strategies to generate mechanically successful articulated fronds. By using computational models to explore different bending strategies, we show that there are multiple ways to generate flexibility in upright corallines but not all morphological strategies are mechanically equivalent. Corallinoids have many joints, lithophylloids have pliant joints, and metagoniolithoids have longer joints—while these strategies can lead to comparable thallus flexibility, they also lead to different levels of stress amplification in bending. Moreover, genicula at greatest risk of stress amplification are typically the strongest, universally mitigating the trade‐off between flexibility and stress reduction.  相似文献   

8.
The monotypic coralline red alga, Choreonema thuretii (Bornet) Schmitz (Choreonematoideae), grows endophytically within three geniculate genera of the Corallinoideae. Although the thallus of Choreonema is reduced, lacks differentiated plastids, and is endophytic except for its conceptacles, its status as a parasite has been questioned because cellular connections to the host had not been ob served. Transmission electron microscopy, however, disclosed a previously undescribed type of parasitic interaction in which Choreonema interacts with its host through specialized cells known as lenticular cells. These small, lens-shaped cells are produced from the single file of host-penetrating vegetative cells. Pit plug morphology between vegetative and lenticular cells is polarized. Plug caps facing the vegetative cell have normal coralline morphology, while those facing the lenticular cell are composed of three layers. Regions of lenticular cells near host cells protrude toward the host cell; upon encountering the host cell wall, the prolrusion produces numerous finger-like fimbriate processes that make cellular connections with the host cell. Lenticular cells may extend several protrusions toward a host cell or penetrate more than one host cell; two or more lenticular cells may also penetrate the same host cell. The lack of secondary pit connections, cell fusions, and passage of parasitic nuclei suggest that this parasitic relationship may be evolutionarily older than previously reported cases of parasitism in red algae.  相似文献   

9.
Compared to stable reef habitats, dynamic boulder-reefs (commonly called boulder-fields when intertidal) host many habitat specialist species. Most occur underneath boulders where they are largely hidden from view; only limited research has assessed their life-histories despite their widespread importance for biological diversity. But some abundant under-boulder species likely structuring this system are habitat generalists widely researched elsewhere. Here we review this research, focusing on three widespread under-boulder sessile taxa: spirorbids, serpulids (tubeworms) and nongeniculate coralline algae, and three mobile taxa: sea urchins, chitons and crabs. Spirorbids have extensive reproductive/colonization capabilities but are readily out-competed. We thus characterize spirorbids as mostly early-successional, while serpulids often have greater competitiveness. Nongeniculate corallines occur underneath boulders where light reaches, although they can withstand low levels of that and most other resources. Such traits characterize nongeniculate corallines as late-successional. Thus, succession underneath boulders may shift deterministically from early tubeworms to late nongeniculate corallines. Habitat generalist sea urchin and chiton species often have strong inter-specific interactions in exposed habitats. Future experiments may find that under-boulder aggregations of these taxa, and also crabs, are impacting algal and invertebrate assemblages. These experiments will be required if dynamic boulder-reefs are to be as thoroughly understood as other benthic systems.  相似文献   

10.
Systematics of the red algal order Corallinales has a long and convoluted history. In the present study, molecular approaches were used to assess the phylogenetic relationships based on the analyses of two datasets: a large dataset of SSU sequences including mainly sequences from GenBank; and a combined dataset including four molecular markers (two nuclear: SSU, LSU; one plastidial: psbA; and one mitochondrial: COI). Phylogenetic analyses of both datasets re-affirmed the monophyly of the Corallinales as well as the two families (Corallinaceae and Hapalidiaceae) currently recognized within the order. Three of the four subfamilies of the Corallinaceae (Corallinoideae, Lithophylloideae, Metagoniolithoideae) were also resolved as a monophyletic lineage whereas members of the Mastophoroideae were resolved as four distinct lineages. We therefore propose to restrict the Mastophoroideae to the genera Mastophora, Metamastophora, and possibly Lithoporella in the aim of rendering this subfamily monophyletic. In addition, our phylogenies resolved the genus Hydrolithon in two unrelated lineages, one containing the generitype Hydrolithon reinboldii and the second containing Hydrolithon onkodes, which used to be the generitype of the now defunct genus Porolithon. We therefore propose to resurrect the genus Porolithon for the second lineage encompassing those species with primarily monomerous thalli, and trichocyte arrangements in large pustulate horizontal rows. Moreover, our phylogenetic analyses revealed the presence of cryptic diversity in several taxa, shedding light on the need for further studies to better circumscribe species frontiers within the diverse order Corallinales, especially in the genera Mesophyllum and Neogoniolithon.  相似文献   

11.
The community structure of rhodoliths beds in the central Brazilian continental shelf was studied under the hypothesis that nongeniculate coralline algae are the major contributors of the individual rhodoliths. Samples were collected from five localities within a single area at 17–18 m depth. At each locality, rhodoliths were collected in 10 random quadrat samples along a 20-m transect. Our results show that dead cores of rhodoliths were significantly composed by nongeniculate coralline red algae rather than bryozoans, corals, or inorganic material. The live outer layers of the rhodoliths are composed mainly of 7 species of nongeniculate red coralline algae (Lithophyllum coralline, L. johansenii, L. depressum, L. stictaeformis, Neogoniolithon brassica-florida, Spongites fruticosus, and Lithothamnion muellerii) associated with other encrusting organisms such as bryozoans, sponges, corals, barnacles, and Peyssonnelia red algae. Significant differences were found in the proportion of Lithophyllum species in relation to other red coralline algae found in this study. Our results show that on the Brazilian continental shelf, the rhodolith-forming species are quite higher in size than in any other studied areas in the world. There was no difference in the proportion of live-to-dead rhodolith materials, suggesting an old bed deposit. Also, the amount of calcium carbonate material in the specimens is relevant to take in account in terms of the CO2 balance worldwide.  相似文献   

12.
Phycologists have hypothesized that the diminutive fronds produced by species in the genera Chiharaea and Yamadaia, which are composed of comparatively few genicula and intergenicula, represent morphological intermediates in the evolution of articulated corallines from crustose ancestors. We test this “intermediate frond hypothesis” by comparing rbcL sequences from the generitype species Chiharaea bodegensis and Yamadaia melobesioides to sequences from other coralline genera. We demonstrate that Chiharaea includes two other NE Pacific species, Arthrocardia silvae and Yamadaia americana. Chiharaea species are characterized morphologically by inflated intergenicula and axial conceptacles with apical or acentric pores. Although relationships among the three species are unresolved, Chiharaea bodegensis, C. americana comb. nov., and C. silvae comb. nov. are distinguished from one another by DNA sequences, morphology, habitat, and biogeography. Chiharaea occurs together with Alatocladia, Bossiella, Calliarthron, and Serraticardia macmillanii in a strongly supported clade of nearly endemic north Pacific articulated coralline genera and species that have evolved relatively recently compared to other articulated corallines. In contrast, NW Pacific Yamadaia melobesioides belongs in a clade with Corallina officinalis, the generitype species of Corallina, and therefore we reduce Yamadia to a synonym of Corallina and propose Corallina melobesioides comb. nov. We reject the ‘intermediate frond hypothesis’ and conclude that Chiharaea and Yamadaia are recently derived taxa that evolved from articulated coralline ancestors and represent a reduction in the number of genicula and intergenicula.  相似文献   

13.
In the present study, relationships among three genera Acontias, Acontophiops, and Typhlosaurus, that comprise the South African limbless lizard subfamily Acontinae, were assessed with partial sequences of the 16S rRNA mitochondrial DNA gene. In addition, relationships within Acontias were further investigated using sequence data from the cytochrome oxidase I gene (COI). Maximum likelihood and maximum parsimony analyses of the 16S rRNA mtDNA data revealed that within this subfamily, Typhlosaurus is basal while Acontophiops and Acontias are sister taxa. Based on the 16S rRNA mtDNA data, the relationships within Acontias placed A. meleagris orientalis as the sister taxon of A. percivali tasmani, with A. m. orientalis lineacauda morph and A. m. meleagrus being the sister taxa to this group. The small-bodied skinks A. lineatus lineatus and A. l. tristis formed a monophyletic group, with the medium-bodied species A. gracilicauda gracilicauda being their sister taxon. Analyses of the COI gene for Acontias place A. m. orientalis as the sister taxon of A. p. tasmani with both A. meleagris meleagris and A. m. orientalis lineacauda being distinct. In contrast to the 16S rRNA mtDNA data, the COI data placed A. g. gracilicauda as the sister taxon to these medium-bodied species; while the subspecies status of the small-bodied taxa A. l. lineatus and A. l. tristis is reaffirmed. Combined analysis of both gene fragments for Acontias taxa recovered the same clades as found using only COI data. Systematic affinities in Acontias are discussed. These results indicate that Acontias is more species rich than previously thought.  相似文献   

14.
The temporal dimension of the most recent Corallinaceae (order Corallinales) phylogeny was presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a separation of Corallinales from Hapalidiales in the Albian (Early Cretaceous ~105 mya). Neither the calibration nor the fossil record resolved the succession of appearance of the first three emerging subfamilies: Mastophoroideae, Corallinoideae, and Neogoniolithoideae. The development of the tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials was an evolutionary novelty emerging at the Cretaceous–Paleogene boundary (~66 mya). This novelty was shared by the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae, which diverged in the early Paleogene. Subclades within the Metagoniolithoideae and Lithophylloideae diversified in the late Oligocene–middle Miocene (~28–12 mya). The most common reef corallinaceans (Hydrolithon, Porolithon, Harveylithon, “Pneophyllum” conicum, and subclades within Lithophylloideae) appeared in this interval in the Indo‐Australian Archipelago.  相似文献   

15.
The phylogenetic relationships of 27 species of common Indo-Pacific snappers (Lutjanidae) were explored using the 16S ribosomal RNA and cytochrome b mitochondrial genes with minimum evolution, maximum parsimony, maximum likelihood and Bayesian inference analyses. Included were species representing four subfamilies, the Caesioninae, Etelinae, Paradicichthyinae, and Lutjaninae. Members of the closely related families Haemulidae, Lethrinidae, Nemipteridae and Sparidae, were included for outgroup comparisons and to explore the relationships between the Haemuloidea, Lutjanoidea and Sparoidea. Monophyly of the Lutjanidae was resolved. The Caesioninae was nested within the Lutjaninae, supporting the recent view that the Caesionidae should be treated as a synonym of the Lutjanidae. The subfamilies Etelinae and Paradicichthyinae were resolved as sister taxa to the remainder of the Lutjanidae, which corroborates previous cladistic analyses conducted to determine relationships of lutjanid subfamilies. Bayesian inference and maximum likelihood analyses suggest that Macolor is the sister taxon to the Caesioninae and may represent a transitional form between the Lutjaninae and Caesioninae. Three species of Western Atlantic lutjanids, Lutjanus campechanus, L. synagris, and Rhomboplites aurorubens, were included in the analyses to examine their relationships to Indo-Pacific species; they formed a well-supported clade nested within Pacific lutjanines suggesting that Atlantic species of Lutjaninae are derived from an Indo-Pacific lineage. Results of our molecular phylogenetic analyses are congruent with the general morphology and external colouration of the resolved groups of species of Lutjanus. The "black spot" complex containing L. fulviflamma, L. monostigma, and L. russelli was resolved with strong support, and had L. carponotatus nested within. The morphology of L. carponotatus suggests a close relationship to this group, and the lack of the black spot near the lateral line below the soft dorsal fin is possibly a secondary loss. As expected, the "blue-lined" species, L. kasmira and L. quinquelineatus, formed a strongly supported clade. Lutjanus bohar and L. gibbus, both distinctly red, long-lived fish that often accumulate large quantities of ciguatera toxin in their tissues, were resolved as sister taxa.  相似文献   

16.
Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species‐specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pHcf) using δ11B as a proxy. Declines in δ11B for all three species are consistent with shifts in δ11B expected if B(OH)4? was incorporated during precipitation. In particular, the δ11B ratio in Amphiroa anceps was too low to allow for reasonable pHcf values if B(OH)3 rather than B(OH)4? was directly incorporated from the calcifying fluid. This points towards δ11B being a reliable proxy for pHcf for coralline algal calcite and that if B(OH)3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH)4?. We thus show that pHcf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO2, as did their pHcf. Neogoniolithon sp. had the highest pHcf, and most constant calcification rates, with the decrease in pHcf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pHcf under ocean acidification is physiologically important and should be included in future models involving calcification.  相似文献   

17.
During the Pliocene and Pleistocene, the Monte Cetona (Northern Apennines, central Italy) was part of an elongated island. The Middle Pliocene deposits around the Monte Cetona are represented by shallow-water marine carbonates rich in coralline red algae and bryozoans. These skeletal carbonates, characterising a coralline algal-dominated factory, were analysed in terms of microfacies, taxonomy, and growth-forms of coralline red algal assemblage. Three microfacies were distinguished on the basis of component distribution and fabric analysis: coralline algal rudstones, coralline algal floatstones, and bioclastic packstones. Skeletal components are commonly abraded, bioeroded, and encrusted. The shallow-water skeletal carbonates are strongly bioturbated and any primary sedimentary structure is obliterated. The distribution of the coralline growth-forms suggests a decreasing hydrodynamic gradient from the coralline algal rudstone, through the coralline algal floatstone to the bioclastic packstone microfacies. The coralline algal flora consists of eight species representing the subfamilies Lithophylloideae, Mastophoroideae and Melobesioideae. The assemblage is dominated by lithophylloids. Other biogenic components are bryozoans, barnacles, echinoderms, and benthic foraminifera. These coralline algal assemblages were deposited just above the fair-weather wave base and indicate a shallow-marine temperate water setting for the eastern Tyrrhenian Sea during the Mid Pliocene.  相似文献   

18.
Phylogenetic analyses of 18S rDNA gene data for Choreonema thuretii (Corallinales, Rhodophyta) and available data for other coralline red algae indicated that Choreonema belongs to the same lineage as other taxa of Corallinales possessing tetra/bisporangial conceptacles with multiporate plates. These results, when integrated with extant morphological/anatomical data, ultrastructural data, and taxonomic data led to the conclusion that all taxa of Corallinales possessing multiporate conceptacles belong to a distinct family, the Hapalidiaceae. Recognition of the Hapalidiaceae as a distinct family was supported both phylogenetically and phenetically. The Hapalidiaceae includes those taxa of Corallinales whose tetrasporangia produce zonately arranged spores and whose tetra/bisporangia are borne in conceptacles, produce apical plugs, and develop beneath multiporate plates. The Hapalidiaceae includes the subfamilies Choreonematoideae, Melobesioideae, and Austrolithoideae, formerly placed in the Corallinaceae sensu lato . The Choreonematoideae lack cell connections between adjacent vegetative filaments and have a multiporate plate that is acellular at maturity, consisting only of a calcium carbonate matrix. The Austrolithoideae and Melobesioideae both have cellular pore plates; taxa of Melobesioideae have cell fusions between cells of adjacent vegetative filaments, whereas taxa of Austrolithoideae lack cellular connections between adjacent vegetative filaments. Inclusion of the Austrolithoideae in the Hapalidiaceae was based entirely on morphological/anatomical evidence; molecular evidence currently is lacking. Relevant historical and nomenclatural data are included.  相似文献   

19.
Previous biomechanical studies of wave‐swept macroalgae have revealed a trade‐off in growth strategies to resist breakage in the intertidal zone: growing in girth versus growing strong tissues. Brown macroalgae, such as kelps, grow thick stipes but have weak tissues, while red macroalgae grow slender thalli but have much stronger tissues. For example, genicular tissue in the articulated coralline Calliarthron cheilosporioides Manza is more than an order of magnitude stronger than some kelp tissues, but genicula rarely exceed 1 mm in diameter. The great tissue strength of Calliarthron genicula results, at least in part, from a lifelong strengthening process. Here, a histological analysis is presented to explore the cellular basis for mechanical strengthening in Calliarthron genicula. Genicula are composed of thousands of fiber‐like cells, whose cell walls thicken over time. Thickening of constitutive cell walls likely explains why older genicula have stronger tissues: a mature geniculum may be >50% cell wall. However, the material strength of genicular cell wall is similar to the strength of cell wall from a freshwater green alga, suggesting that it may be the quantity—not the quality—of cell wall material that gives genicular tissue its strength. Apparent differences in tissue strength across algal taxa may be a consequence of tissue construction rather than material composition.  相似文献   

20.
Molecular phylogenetic relationships among members of the odonate genus Libellula (Odonata: Anisoptera: Libellulidae) were examined using 735 bp of mitochondrial COI and 416 bp of 16S ribosomal RNA gene sequences. Considerable debate exists over several relationships within Libellula, as well over the status of two putative genera often placed as subgenera within Libellula: Ladona and Plathemis. Parsimony and maximum-likelihood analyses of the separate and combined data sets indicate that Plathemis is basal and monophyletic and that Ladona is the sister clade to the remainder of Libellula sensu stricto (s.s.) (all species within the genus Libellula, excluding Plathemis and Ladona). Moreover, two European taxa, Libellula fulva and L. depressa, were found to occupy a sister group relationship within the Ladona clade. Relationships within Libellula s.s. are less well resolved. However, monophyletic lineages within the genus are largely consistent with morphologically based subgeneric classifications. Although tree topologies from each analysis differed in some details, the differences were in no case statistically significant. The analysis of the combined COI and 16S data yielded trees with overall stronger support than analyses of either gene alone. Several analyses failed to support the monophyly of Libellula sensu lato due to the inclusion of one or more outgroup species. However, statistical comparisons of topologies produced by unconstrained analyses and analyses in which the monophyly of Libellula was constrained indicate that any differences are nonsignificant. Based on morphological data, we therefore reject the paraphyly of Libellula and accept the outgroup status of Orthemis ferruginea and Pachydiplax longipennis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号