首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
以载玻片作参比材料,成功地解决了较厚叶片不能直接测定505nm光吸收来反映玉米黄质水平的难题。并通过对银杏叶片505nm光吸收的不同方法测定分析比较,表明该方法测定结果稳定可靠。  相似文献   

2.
用考玛斯亮兰G—250迅速,灵敏地测定蛋白质浓度   总被引:6,自引:0,他引:6  
路阳  王贤舜 《生物学杂志》1992,(1):24-25,32
蛋白质浓度测定法是生物化学实验室最常用的方法,目前用得比较多的有双缩脲法、Folin酚法。对混有核酸的蛋白质则用260nm和280nm的紫外光吸收测定法。如果利用肽键在远紫外区(205 nm附近)的光吸收,受氨基酸组成分的影响较小,则可更精确地测定蛋白质浓度。比较这些方法的优劣时我们发现:双缩脲法灵敏度低;Folin酚法需要较多的试剂,过程比较复杂,不准确;280nm和260nm的光吸收测定法精度不高,对不含核酸的蛋白质的测定有局限性;远紫外光吸收测定精度高,但芳香族和蛋白质二级结构如α-螺旋、β  相似文献   

3.
(二)生物化学部分一、蛋白质含量测定蛋白质含量测定有许多方法,考马斯亮蓝(G-250)比色测定是最灵敏的方法之一。考马斯亮蓝可与蛋白质通过氢键结合生成复合物,结合符合比尔定律。结合前颜料为红色,结合后为蓝色,最大光吸收由465nm转变成595nm。通过测定595nm处最大光吸收的增加,可知结合蛋白质的量。蛋白质和染料结合是一个快速的过程,两分钟内即可完成,并可稳定1小时,测定范围在10—100μg/ml蛋白质之间为线性范围,去污剂有颜色干扰,可影响比色结果。本实验是利用考马斯亮蓝与不同量蛋白质的标准曲线来目测未知蛋白质溶液的蛋白质含量,并…  相似文献   

4.
胰蛋白酶活性的定量测定方法   总被引:4,自引:0,他引:4  
对甲苯磺酰基精氨酸甲酯(TAME)是胰蛋白酶的专一性底物. TAME经胰蛋白酶水解释放出的对甲苯磺酰基精氨酸与活性测定混合物中的NaOH反应, 导致溶液pH值的下降. 以酚红为指示剂, 通过测定555nm处光吸收值的降低可以监测pH的变化. 在0.001~0.3μg的范围内, 胰蛋白酶含量与555nm处光吸收值的降低呈线性关系.  相似文献   

5.
粗品肝素钠质量情况和效价范围的判断   总被引:5,自引:0,他引:5  
采用测定粗品肝素纳 2 60、2 80 nm光吸收和蛋白质的三氯乙酸浊度法 ,有效地解决了质量和效价的判断问题。结果显示 ,光吸收和蛋白质浊度与样品的效价成反比关系 ,可根据所归纳的光吸收和蛋白质浊度的 6个程度 ,判断30~ 14 0 USP u/m g的样品 ,鉴定样品质量的优劣程度  相似文献   

6.
银杏叶片遭受光量子通量密度(PFD)为1200μmolm-2s-1的强光胁迫后,净光合速率(Pn)、气孔导度(Gs)、细胞间隙CO2浓度(Ci)、PSⅡ光化学效率(Fv/Fm)和表现量子效率(AQY)都下降,而叶片在505nm处的光吸收(A505)、初始荧光水平(Fo)和荧光的非光化学猝灭(qN)上升。在去除强光胁迫数小时之后,这些参数都不能完全恢复。这就表明,虽然强光能引起严重的光抑制,可能涉及依赖叶黄素循环的热耗散和一部分PSⅡ反应中心的失活及破坏,但是导致光合速率降低的主要因素仍然是气孔导度的降低。  相似文献   

7.
根据核糖核酸酶水解核糖核酸时,在300nm波长处光吸收值下降的速率被肝素抑制之特点,用已知量肝素对抑制程度进行定量,制得标准检量线,从而测得未知量的肝素含量.此法简捷方便,一次能测定多个样品.  相似文献   

8.
用分光光度计直接测定几种植物叶圆片和单细胞盐藻照强光(1500μmolm-2s-1)前后在505nm(玉米黄质吸收峰)的光一暗差示吸收变化。短期照光的时问进程中,芦荟(Aloevera)、芒果(Mangiferaindica)、白菜(BrassicaChinensiS)和苦卖菜(SonchusOleraceus)的AA505持续增高,达最大值后有所下降。加入抗坏血酸能刺激光下AA505增大。光诱导的AA505可在暗下消失。单细胞盐藻M50,受光诱导的变化趋势与高等植物叶片相似。研究表明,强光下植物体内出现活跃的与紫黄质去环氧化反应有关的光保护机制的运行,其状况可直接用M505作为检测指标。与白光相比,红色强光只有照射5min时才引·起盐藻AA505上升,在5-90min照光过程中对Fv/Fm的影响比白光小,对AA540的影响比白光大,但两种光反对光合色素的影响没有差异。  相似文献   

9.
传统光声成像外源对比剂的光吸收主要集中在可见光区和传统近红外区(NIR,750~900 nm),开发具有更高光学组织穿透能力的近红外二区(NIR-Ⅱ,1 000~1 700 nm)光吸收外源对比剂对活体深层组织光声成像具有重要意义。本文中,作者选取了光吸收峰在1 000 nm左右的半导体型单壁碳纳米管为近红外二区光学吸收外源对比剂,测试了其在近红外二区激光激发下能够产生较强的光声效应。进一步地,作者通过将该纳米材料包埋在仿体组织的不同深度的位置,获得了仿体组织的深层光声成像,成像深度可达1.5 cm。试验结果表明,具有近红外二区光吸收能力的半导体型单壁碳纳米管在活体深层组织光声成像中有很大的应用潜力。  相似文献   

10.
使用BODIPY505/515荧光染料,通过荧光分光光度法测定藻细胞中的油脂含量。结果表明:BODIPY505/515的最佳染色条件为二甲基亚砜(DMSO)体积分数2%,BODIPY505/515最终质量浓度0.25μg/mL,染色时间30min,染色温度35℃。在最佳染色条件下,微藻油脂含量与荧光强度呈线性相关(R2=0.976 4)。通过测定BODIPY505/515染色的不同种属微藻的荧光强度,应用该关系计算其油脂含量,与质量法测定的结果相比没有显著差异。该方法较为普适,比传统方法相比具有简便快捷,试样用量少的特点,与尼罗红荧光染料相比具有较窄的发射波谱范围,不会与微藻的自身荧光相互干扰,更适于过程监控及高含油藻株的筛选。  相似文献   

11.
Photosynthesis is inhibited by heat stress. This inhibition is rapidly reversible when heat stress is moderate but irreversible at higher temperature. Absorbance changes can be used to detect a variety of biophysical parameters in intact leaves. We found that moderate heat stress caused a large reduction of the apparent absorbance of green light in light-adapted, intact Arabidopsis thaliana leaves. Three mechanisms that can affect green light absorbance of leaves, namely, zeaxanthin accumulation (absorbance peak at 505 nm), the electrochromic shift (ECS) of carotenoid absorption spectra (peak at 518 nm), and light scattering (peak at 535 nm) were investigated. The change of green light absorbance caused by heat treatment was not caused by changes of zeaxanthin content nor by the ECS. The formation of non-photochemical quenching (NPQ), chloroplast movements, and chloroplast swelling and shrinkage can all affect light scattering inside leaves. The formation of NPQ under high temperature was not well correlated with the heat-induced absorbance change, and light microscopy revealed no appreciable changes of chloroplast location because of heat treatment. Transmission electron microscopy results showed swollen chloroplasts and increased number of plastoglobules in heat-treated leaves, indicating that the structural changes of chloroplasts and thylakoids are significant results of moderate heat stress and may explain the reduced apparent absorbance of green light under moderately high temperature.  相似文献   

12.
To examine the effects of chilling of leaves of cucumber (Cucumissativus L.) in moderate light on the coupling state of thylakoidsin situ, changes in fluorescence, changes in light scatteringand flash-induced changes in absorbance at 518 nm were examinedin intact leaves. After chilling of leaves at 5?C in the lightfor 5 h, the non-photochemical quenching of fluorescence, ameasure of energisation of thylakoids, was largely suppressed.The treatment also caused a suppression of light-induced changesin the light scattering by leaves, which depends on the formationof a pH gradient across thylakoid membranes. When thylakoidswere prepared by very gentle methods from the leaves chilledin the light, through a step of preparation of intact chloro-plasts,the transport of electrons from H2O to ferricyanide was uncoupled,being insensitive to an uncoupler, methylamine. These data provide consistent evidence that the thylakoids areuncoupled in situ by the chilling of leaves in the light and,as a consequence of the uncoupling, the energisation of themembranes is suppressed. However, the decay of the flash-inducedchange in absorbance at 518 nm in leaves was not markedly acceleratedby the treatment. The thylakoids isolated from leaves chilledin the light, which were in the uncoupled state, also did notshow a rapid decay, unless an efficient uncoupler such as gramicidinwas added. These results suggest that even a considerable uncouplingof thylakoids, brought about by chilling of leaves in the light,is not sufficient to cause a marked acceleration of the decayof the flash-induced change in absorbance at 518 nm. Therefore,analysis at 518 nm is not always a sensitive method for assessingthe coupling state of thylakoids. (Received July 1, 1991; Accepted October 4, 1991)  相似文献   

13.
Dark-grown bean leaves (Phaseolus vulgaris) which had been greened for several days in a repetitive series of brief xenon flashes were studied during the initial induction period when O(2) evolution first appears. The induction of O(2) evolution requires actinic irradiation (e.g. 2 mw/cm(2) of red light) and goes to completion in about 8 minutes with a half-time just under 3 minutes. Absorbance measurements on the intact leaves showed that a change of a carotenoid pigment, monitored at 505 nm, was closely correlated with the rate of O(2) evolution during the induction period. Inhibitor studies, however, showed that the absorbance change persisted in the presence of a number of inhibitors which blocked O(2) evolution. Electron microscopy revealed that the primary thylakoids which were unfused in the flashed leaves before induction became fused in pairs or groups of three during the 8-minute induction period. It is postulated that the 505-nm absorbance change of the carotenoid pigment is correlated more directly with the fusion process than with O(2) evolution. Heat treatment (45 C for 5 min) or infiltration with 0.8 m tris, which prevented the fusion process, also prevented the absorbance change.If the leaves were preilluminated for 8 minutes with very weak red light (20 muw/cm(2)) which induced no O(2) evolution, absorbance change, or thylakoid fusion, there was an immediate burst of O(2) evolution at the onset of actinic irradiation and the induction period, as noted by O(2) evolution or by the 505-nm absorbance change, was reduced to 2 minutes (half-time of 40 seconds). It is concluded that the electron transport system in the flashed leaves is blocked at the Mn site between water and photosystem II and that the photoactivation of Mn into the thylakoid membranes occurs during the low light, photoactivation process. After the electron transport chain is thus repaired, ion-pumping mechanisms driven by actinic light may lead to steady-state photosynthesis as well as to thylakoid fusion.  相似文献   

14.
When cotton (Gossypium hirsutum L., cv Acaia SJC-1) leaves kept in weak light were suddenly exposed to strong red actinic light a spectral absorbance change took place having the following prominent characteristics. (a) It was irreversible within the first four minute period after darkening. (b) The difference in leaf absorbance between illuminated and predarkened leaves had a major peak at 505 nanometers, a minor peak at 465 nanometers, a shoulder around 515 nanometers, and minor troughs at 455 and 480 nanometers. (c) On the basis of its spectral and kinetic characteristics this absorbance change can be readily distinguished from the much faster electrochromic shift which has a peak at 515 nanometers, from the slow, so-called light-scattering change which has a broad peak centered around 535 nanometers and is reversed upon darkening, and from absorbance changes associated with light-induced chloroplast rearrangements. (d) The extent and time course of this absorbance change closely matched that of the deepoxidation of violaxanthin to zeaxanthin in the same leaves. (e) Both the absorbance change and the ability to form zeaxanthin were completely blocked in leaves to which dithiothreitol (DTT) had been provided through the cut petlole. DTT treatment also caused strong inhibition of that component of the 535-nanometer absorbance change which is reversed in less than 4 minutes upon darkening and considered to be caused by increased light scattering. Moreover, DTT inhibited a large part of nonphotochemical quenching of chlorophyll fluorescence in the presence of excessive light. However, DTT had no detectable effect on the photon yield of photosynthesis measured under strictly rate-limiting photon flux densities or on the light-saturated photosynthetic capacity, at least in the short term. We conclude that it is possible to monitor light-induced violaxanthin de-epoxidation in green intact leaves by measurement of the absorbance change at 505 nanometers. Determination of absorbance changes in conjunction with measurements of photosynthesis in the presence and absence of DTT provide a system well suited for future studies of meachanisms of dissipation of excessive excitation energy in intact leaves.  相似文献   

15.
We measured the Δ Ψ and ΔpH components of the transthylakoid proton motive force ( pmf ) in light-adapted, intact tobacco leaves in response to moderate heat. The Δ Ψ causes an electrochromic shift (ECS) in carotenoid absorbance spectra. The light–dark difference spectrum has a peak at 518 nm and the two components of the pmf were separated by following the ECS for 25 s after turning the light off. The ECS signal was deconvoluted by subtracting the effects of zeaxanthin formation (peak at 505 nm) and the qE-related absorbance changes (peak at 535 nm) from a signal measured at 520 nm. Heat reduced ΔpH while Δ Ψ slightly increased. Elevated temperature accelerated ECS decay kinetics likely reflecting heat-induced increases in proton conductance and ion movement. Energy-dependent quenching (qE) was reduced by heat. However, the reduction of qE was less than expected given the loss of ΔpH. Zeaxanthin did not increase with heat in light-adapted leaves but it was higher than would be predicted given the reduced ΔpH found at high temperature. The results indicate that moderate heat stress can have very large effects on thylakoid reactions.  相似文献   

16.
Simultaneous measurements of nonphotochemical quenching of chlorophyll fluorescence and absorbance changes in the 400- to 560-nm region have been made following illumination of dark-adapted leaves of the epiphytic bromeliad Guzmania monostachia. During the first illumination, an absorbance change at 505 nm occurred with a half-time of 45 s as the leaf zeaxanthin content rose to 14% of total leaf carotenoid. Selective light scattering at 535 nm occurred with a half-time of 30 s. During a second illumination, following a 5-min dark period, quenching and the 535-nm absorbance change occurred more rapidly, reaching a maximum extent within 30 s. Nonphotochemical quenching of chlorophyll fluorescence was found to be linearly correlated to the 535-nm absorbance change throughout. Examination of the spectra of chlorophyll fluorescence emission at 77 K for leaves sampled at intervals during this regime showed selective quenching in the light-harvesting complexes of photosystem II (LHCII). The quenching spectrum of the reversible component of quenching had a maximum at 700 nm, indicating quenching in aggregated LHCII, whereas the irreversible component represented a quenching of 680-nm fluorescence from unaggregated LHCII. It is suggested that this latter process, which is associated with the 505-nm absorbance change and zeaxanthin formation, is indicating a change in state of the LHCII complexes that is necessary to amplify or activate reversible pH-dependent energy dissipation, which is monitored by the 535-nm absorbance change. Both of the major forms of nonphotochemical energy dissipation in vivo are therefore part of the same physiological photoprotective process and both result from alterations in the LHCII system.  相似文献   

17.
The effects of dithiothreitol on absorbance changes at 505 and 515 nm in isolated lettuce chloroplasts were investigated. Dithiothreitol inhibited the ascorbate-dependent 505-nm change that is due to the de-epoxidation of violaxanthin to zeaxanthin. Dithiothreitol was effective for both light-induced de-epoxidation at pH 7 and dark de-epoxidation at pH 5. Titration of de-epoxidase activity with dithiothreitol resulted in complete inhibition at about 5 μmoles dithiothreitol per mg chlorophyll. Removal of dithiothreitol restored de-epoxidase activity. These results are consistent with the view that dithiothreitol inhibits violaxanthin de-epoxidation and the corresponding 505-nm change by reducing a disulfide that is required for de-epoxidase activity.

Dithiothreitol was effective in resolving absorbance changes due to violaxanthin de-epoxidation and other changes that were superimposed under some conditions. At 515 nm and in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), phenazine methosulfate, and ascorbate, dithiothreitol inhibited the large, slow and irreversible change which was due to de-epoxidation but not the fast and reversible so-called 515-nm change. At 505 nm and under similar conditions, dithiothreitol revealed the presence of a slow reversible change in addition to the one from de-epoxidation. Results with dithiothreitol showed that the absorbance change at 505 nm in the presence of DCMU, 2,6-dichlorophenolindophenol and ascorbate was due entirely to de-epoxidation. Similarly, absorbance changes at 515 nm also appeared to be mainly from de-epoxidation but with the presence of a small transient change due to some other components. It is suggested that dithiothreitol may be useful in resolving complex light-induced absorbance changes in other photosynthetic systems as well as in enabling new studies on reversible absorbance changes in the 500-nm region.  相似文献   


18.
Michel Havaux  Florence Tardy 《Planta》1996,198(3):324-333
Moderately elevated temperatures induce a rapid increase in the heat and light resistance of photosystem II (PSII) in higher-plant leaves. This phenomenon was studied in intact potato leaves exposed to 35 °C for 2 h, using chlorophyll fluorometry, kinetic and difference spectrophotometry and photoacoustics. The 35 °C treatment was observed to cause energetic uncoupling between carotenoids and chlorophylls: (i) the steady-state chlorophyll fluorescence emission excited by a blue light beam (490 nm) was noticeably reduced as compared to fluorescence elicited by orange light (590 nm) and (ii) the quantum yield for photosynthetic oxygen evolution in blue light (400–500 nm) was preferentially reduced relative to the quantum yield measured in red light (590–710 nm). Analysis of the chlorophyll-fluorescence and light-absorption characteristics of the heated leaves showed numerous analogies with the fluorescence and absorption changes associated with the light-induced xanthophyll cycle activity, indicating that the carotenoid species involved in the heat-induced pigment uncoupling could be the xanthophyll violaxanthin. More precisely, the 35 °C treatment was observed to accelerate and amplify the non-photochemical quenching of chlorophyll fluorescence (in both moderate red light and strong white light) and to cause an increase in leaf absorbance in the blue-green spectral region near 520 nm, as do strong light treatments which induce the massive conversion of violaxanthin to zeaxanthin. Interestingly, short exposure of potato leaves to strong light also provoked a significant increase in the stability of PSII to heat stress. It was also observed that photosynthetic electron transport was considerably more inhibited by chilling temperatures in 35 °C-treated leaves than in untreated leaves. Further, pre-exposure of potato leaves to 35 °C markedly increased the amplitude and the rate of light-induced changes in leaf absorbance at 505 nm (indicative of xanthophyll cycle activity), suggesting the possibility that moderately elevated temperature increased the accessibility of violaxanthin to the membrane-located de-epoxidase. This was supported by the quantitative analysis of the xanthophyll-cycle pigments before and after the 35 °C treatment, showing light-independent accumulation of zeaxanthin during mild heat stress. Based on these results, we propose that the rapid adjustment of the heat resistance of PSII may involve a modification of the interaction between violaxanthin and the light-harvesting complexes of PSII. As a consequence, the thermoresistance of PSII could be enhanced either directly through a conformational change of PSII or indirectly via a carotenoid-dependent modulation of membrane lipid fluidity.Abbreviations and Symbols Fo and Fm initial and maximal level of chlorophyll fluorescence, respectively - Fv = Fm — Fo variable chlorophyll fluorescence - LHC(II) light-harvesting chlorophylla/b-protein complexes (of PSII) - photoacoustically measured quantum yield of photosynthetic oxygen evolution (in relative values) - P fluorimetrically measured quantum yield of PSII photochemistry in the light - PFD photon flux density - qE pH dependent quenching of chlorophyll fluorescence We thank Dr. J-L Montillet (CEA-Cadarache) for the use of his HPLC apparatus and Professor Y. Lemoine (University of Lille, France) for technical advice on HPLC.  相似文献   

19.
In this work we characterize the changes induced by iron deficiency in the pigment composition of sugar beet (Beta vulgaris L.) leaves. When sugar beet plants were grown hydroponically under limited iron supply, neoxanthin and β-carotene decreased concomitantly with chlorophyll a, whereas lutein and the carotenoids within the xanthophyll cycle were less affected. Iron deficiency caused major increases in the lutein/chlorophyll a and xanthophyll cycle pigments/chlorophyll a molar ratios. Xanthophyll cycle carotenoids in Fe-deficient plants underwent epoxidations and de-epoxidations in response to ambient light conditions. In dark adapted Fe-deficient plants most of the xanthophyll cycle pigment pool was in the epoxidated form violaxanthin. We show, both by HPLC and by in vivo 505 nanometers absorbance changes, that in Fe deficient plants and in response to light, the de-epoxidated forms antheraxanthin and zeaxanthin were rapidly formed at the expense of violaxanthin. Several hours after returning to dark, the xanthophyll cycle was shifted again toward violaxanthin. The ratio of variable to maximum chlorophyll fluorescence from intact leaves was decreased by iron deficiency. However, in iron deficient leaves this ratio was little affected by light conditions which displace the xanthophyll cycle toward epoxidation or de-epoxidation. This suggests that the functioning of the xanthophyll cycle is not necessarily linked to protection against excess light input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号