首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electromyographic (EMG) recordings were taken from 14 shoulder muscles (or major parts of them) in a gorilla, a chimpanzee and an orangutan as they stood quadrupedally and tripedally, descended from elevated substrates, crutch-walked, and progressed quadrupedally on inclined and level substrates. In the African apes, low potentials commonly (but not always) occurred in the sternocostal pectoralis major, anterior deltoid, supraspinatus and subscapularis muscles during quadrupedal stance. The quadrupedal orangutan always exhibited low potentials in the pectoralis major muscle and EMG activity commonly occurred in her supraspinatus and subscapularis muscles. Quiescent tripedal stances were not accompanied by striking changes in EMG patterns from those which characterized quadrupedal stances. Per contra, eccentric loadings of the forelimb during descents from elevated substrates generally recruited notable EMG activity in the deltoid, supraspinatus and, to a lesser extent, infraspinatus muscles of the three pongid apes. The pectoralis major and caudal serratus anterior muscles were much more active in Pongo and Pan during these descents. Supportive segments of quadrupedal locomotive cycles were generally accompanied by EMG activity in the pectoralis major, intermediate and posterior deltoid and supraspinatus muscles. The intermediate and posterior deltoid muscles were characteristically active during pre-release of the hand and early swing phase. The cranial trapezius and supraspinatus muscles also may act during early swing phase. We conclude that the pectoralis major and perhaps the supraspinatus and subscapularis might serve regularly as postural muscles during static terrestrial quadrupedalism in pongid apes. The lack of dramatic differences between the EMG patterns exhibited during fist-walking versus knuckle-walking indicates that an evolutionary transformation from a shoulder complex like that of Pongo to ones like Pan or vice versa need not entail major changes in myological features.  相似文献   

2.
D. Schmitt    S. G. Larson    J. T. Stern  Jr 《Journal of Zoology》1994,232(2):215-230
The serratus ventralis in mammals is a fan-shaped scapulo-thoracic muscle that is believed by most morphologists both to support body weight and to rotate the scapula during quadrupedal locomotion. Electromyographic studies of this muscle in cats, dogs and opossums confirm the dual supportive and rotatory roles of the serratus ventralis. Although this muscle has been studied in several primate species, the concentration on arboreal locomotion has resulted in an inadequate data set to permit direct comparisons to non-primate terrestrial quadrupeds. In order to provide a more comparable data set, we examined cranial, mid- and caudal thoracic regions of the serratus ventralis during terrestrial quadrupedalism in the vervet monkey, Cereopithecus aethiops. Our results indicate that the serratus ventralis does support the body during the stance phase of quadrupedalism in this primate. However, unlike several non-primate mammals, it plays a relatively insignificant rotatory role during swing phase.  相似文献   

3.
Chimpanzees and gibbons, along with other hominoids, share a number of features in the morphology of their shoulders that have generally been associated with use of the upper limb in overhead postural and locomotor activities. These include the position and shape of the scapula, as well as the morphology of the proximal end of the humerus. Results of an electromyographic (EMG) analysis of shoulder muscle activity patterns indicate that these two species of hominoids also share broad similarities in shoulder muscle function during locomotion and voluntary movements. Differences do exist, however, in the activity patterns of subscapularis, a medial rotator of the arm. These differences mainly involve a greater participation by the gibbon subscapularis in free arm movements. This greater participation is characterized by earlier onset of muscle activity, higher amplitude of recruitment, and involvement of more of the total mass of the muscle. These differences in muscle recruitment suggest that the shoulder of gibbons differs from that of chimpanzees in some manner that necessitates the greater contribution of a medial rotator to the production of motion in the upper limb. I suggest that the low degree of humeral head torsion in gibbons, compared to that of other hominoids, gives their elbow a “lateral set” that must be overcome by the action of subscapularis during free arm movements. I propose that this modest degree of humeral head torsion in gibbons reflects a compromise between necessary changes caused by the repositioning of the scapula onto the dorsum of the thorax and the demands for extreme positioning of the elbow during brachiation. In addition, I suggest that the greater amount of torsion in the chimpanzee humerus is an accommodation to quadrupedal habits, and finally, that the high degree of torsion in human humeri is an independently acquired trait related to use of the upper limb as a manipulatory organ.  相似文献   

4.
The aim of the present study was to analyse the effects of microgravity on i) the achievement of goal-directed arm movements and ii) the quadrupedal non-human primate locomotion. A reaching movement in weightlessness would require less muscle contraction since there is no need to oppose gravity. Consequently the electromyographic (EMG) activity of the monkey forelimb muscles should be changed during or after spaceflight. EMG activity of the biceps and triceps muscles during goal-directed arm movements were studied in Rhesus monkeys before, during and after 14 days of spaceflight and flight simulation at normal gravity. The EMG activity was also recorded during treadmill locomotion before and after spaceflight. When performing arm motor tasks, the delay values of the EMG bursts were unchanged during the flight. On the contrary, mean EMG was significantly decreased during the flight comparatively to the pre- and post-flight values, which were very similar. Compared with flight animals, the control ground monkey showed no change in the burst durations and mean EMG. After spaceflight, quadrupedal locomotion was modified. The animals had some difficulty in moving, and abnormal steps were numerous. The integrated area of triceps bursts was increased for the stance phase during locomotion. Taken together these data showed that spaceflight induces a dual adaptative process: first, the discharge of the motor pools of the forelimb musculature was modified during exposure to microgravity, and then upon return to Earth, monkeys changed their new motor strategy and re-adapt to normal gravity.  相似文献   

5.

Previous studies of the morphology of the humerus in kangaroos showed that the shape of the proximal humerus could distinguish between arboreal and terrestrial taxa among living mammals, and that the extinct “giant” kangaroos (members of the extinct subfamily Sthenurinae and the extinct macropodine genus Protemnodon) had divergent humeral anatomies from extant kangaroos. Here, we use 2D geometric morphometrics to capture the shape of the distal humerus in a range of extant and extinct marsupials and obtain similar results: sthenurines have humeral morphologies more similar to arboreal mammals, while large Protemnodon species (P. brehus and P. anak) have humeral morphologies more similar to terrestrial quadrupedal mammals. Our results provide further evidence for prior hypotheses: that sthenurines did not employ a locomotor mode that involved loading the forelimbs (likely employing bipedal striding as an alternative to quadrupedal or pentapedal locomotion at slow gaits), and that large Protemnodon species were more reliant on quadrupedal locomotion than their extant relatives. This greater diversity of locomotor modes among large Pleistocene kangaroos echoes studies that show a greater diversity in other aspects of ecology, such as diet and habitat occupancy.

  相似文献   

6.
Among the characteristics that are thought to set primate quadrupedal locomotion apart from that of nonprimate mammals are a more protracted limb posture and larger limb angular excursion. However, kinematic aspects of primate or nonprimate quadrupedal locomotion have been documented in only a handful of species, and more widely for the hind than the forelimb. This study presents data on arm (humerus) and forelimb posture during walking for 102 species of mammals, including 53 nonhuman primates and 49 nonprimate mammals. The results demonstrate that primates uniformly display a more protracted arm and forelimb at hand touchdown of a step than nearly all other mammals. Although primates tend to end a step with a less retracted humerus, their total humeral or forelimb angular excursion exceeds that of other mammals. It is suggested that these features are components of functional adaptations to locomotion in an arboreal habitat, using clawless, grasping extremities.  相似文献   

7.
By most accounts, the upper limb of the chimpanzee is primarily adapted to suspensory postures and locomotion. In order to determine how the derived morphology of the chimpanzee forelimb has affected the form of quadrupedal locomotion displayed by these animals, electromyographic activity patterns of 10 shoulder muscles during knuckle-walking in two chimpanzee subjects were analysed and compared to data on the opossum and cat taken from the literature. Telemetered electromyography coupled with simultaneous video recording was employed in order to study unfettered locomotion in the chimpanzee subjects.
Chimpanzees are characterized by a quadrupedal gait in which the hind limb overstrides the ipsilateral forelimb. Forelimb position in the plane of abduction/adduction is significantly affected by whether the hind limb passes inside or outside its ipsilateral forelimb. The degree of abduction adduction of the forelimb, in turn, influences many of the muscle activity patterns. That is, some muscles would be more frequently or less frequently active, depending on whether the arm was relatively abducted or adducted during a stride. Thus, there can be no single motor programme that generates the step cycle in chimpanzees.
While there are some parallels between muscle recruitment patterns for chimpanzee, opossum and cat quadrupedalism, the results of this study also indicate that many aspects of muscle use in chimpanzees have been significantly influenced by factors related to increased mobility of the upper limb. Finally, this study has revealed that moving the arm forward during swing phase of knuckle-walking is not a simple product of muscular elTort. and that other mechanisms must be involved. However, it is unclear at present exactly what these mechanisms may be.  相似文献   

8.
In living primates, except the great apes and humans, the foot is placed in a heel-elevated or semi-plantigrade position when these animals move upon arboreal or terrestrial substrates. Heel placement and bone positions in the non-great ape primate foot are designed to increase mobility and flexibility in the arboreal environment. Orangutans have further enhanced foot mobility by adapting their feet for suspension and thus similarly utilize foot positions where the heel does not touch the substrate. Chimpanzees and gorillas represent an alternative pattern (plantigrady), in which the heel contacts the surface of the support at the end of swing phase, especially during terrestrial locomotion. Thus, chimpanzees and gorillas possess feet adapted for both arboreal and terrestrial substrates. African apes also share several osteological features related to plantigrady and terrestrial locomotion with early hominids. From this analysis, it is apparent that hominid locomotor evolution passed through a quadrupedal terrestrial phase.  相似文献   

9.
10.
Investigations of cross-sectional geometry in nonhuman primate limb bones typically attribute shape ratios to qualitative behavioral characterizations, e.g., leaper, slow climber, brachiator, or terrestrial vs. arboreal quadruped. Quantitative positional behavioral data, however, have yet to be used in a rigorous evaluation of such shape-behavior connections. African apes represent an ideal population for such an investigation because their relatedness minimizes phylogenetic inertia, they exhibit diverse behavioral repertoires, and their locomotor behaviors are known from multiple studies. Cross-sectional data from femoral and humeral diaphyses were collected for 222 wild-shot specimens, encompassing Pan paniscus and all commonly recognized African ape subspecies. Digital representations of diaphyseal cross sections were acquired via computed tomography at three locations per diaphysis. Locomotor behaviors were pooled broadly into arboreal and terrestrial categories, then partitioned into quadrupedal walking, quadrumanous climbing, scrambling, and suspensory categories. Sex-specific taxonomic differences in ratios of principal moments of area (PMA) were statistically significant more often in the femoral diaphysis than the humeral diaphysis. While it appears difficult to relate a measure of shape (e.g., PMA ratio) to individual locomotor modes, general locomotor differences (e.g., percentage arboreal vs. terrestrial locomotion) are discerned more easily. As percentage of arboreal locomotion for a group increases, average cross sections appear more circular. Associations between PMA ratio and specific locomotor behaviors are less straightforward. Individual behaviors that integrate eccentric limb positions (e.g., arboreal scrambling) may not engender more circular cross sections than behaviors that incorporate repetitive sagittal movements (e.g., quadrupedal walking) in a straightforward manner.  相似文献   

11.
Animals that live and travel in trees display a variety of morphological and behavioral adaptations to help them maintain balance on narrow flexible supports. Among these adaptations are long tails that can be used as counterweights, and freely mobile limbs in order to reach discontinuous supports. Here we describe two additional ways in which these features can contribute to balance during arboreal locomotion. Electromyographic (EMG) recordings of the forearm rotators pronator quadratus and supinator during over-ground and above-branch quadrupedal locomotion in five species of Old World monkeys revealed their contribution to shifting the weight of the body to help change the direction of travel and maintain balance on a branch. In addition, we observed a coordinated mechanism consisting of a sweeping tail rotation toward the direction of imbalance, to impart an angular momentum to the body that assists in the restoration of balance. While all five primate species utilized forearm rotators to shift their bodies toward one side or the other during quadrupedal walking along a branch, the tail-whip mechanism was most frequently used by the largest and most terrestrial species. We suggest that their large size and/or terrestrial habits have made them less adept at arboreal locomotion, and therefore most likely to utilize auxiliary balancing mechanisms. The usefulness of a long tail as a balancing aid during arboreal locomotion highlights the puzzling nature of the evolutionary loss of a tail in the ape and human lineage.  相似文献   

12.
This study quantified the relationship between EMG signals recorded by surface and indwelling electrodes for the infraspinatus and supraspinatus during submaximal axial humeral rotation. Muscular activity was measured on 20 participants during 82 submaximal isometric internal or external axial humeral rotations in a range of postures and intensities. Equations to predict indwelling magnitudes from surface data were generated and the effects of humeral angle and intensity on this relationship were also evaluated.Supraspinatus surface data explained 72–76% of the variance in the indwelling data. Surface data overestimated indwelling data by up to 30% of maximal voluntary contraction (MVC). Infraspinatus surface data explained 62–64% of the variance in the indwelling data, but overestimated by 72% and 400% MVC in external and internal axial humeral rotation trials, respectively. Humeral abduction angle and exertion intensity both altered the relationship between electrode types modestly (p < 0.01) for most muscles and exertions. Better variance explanation was achieved for these submaximal exertions than previously reported values for maximal exertions.These results help inform electrode type selection for the recording of supraspinatus and infraspinatus EMG. Caution is recommended when interpreting surface recordings as indicators of indwelling recordings for exertions where the muscle studied is not a primary mover.  相似文献   

13.
Hamstring muscle kinematics and activation during overground sprinting   总被引:3,自引:0,他引:3  
Hamstring muscle strain injury is one of the most commonly seen injuries in sports such as track and field, soccer, football, and rugby. The purpose of this study was to advance our understanding of the mechanisms of hamstring muscle strain injuries during over ground sprinting by investigating hamstring muscle-tendon kinematics and muscle activation. Three-dimensional videographic and electromyographic (EMG) data were collected for 20 male runners, soccer or lacrosse players performing overground sprinting at their maximum effort. Hamstring muscle-tendon lengths, elongation velocities, and linear envelop EMG data were analyzed for a running gait cycle of the dominant leg. Hamstring muscles exhibited eccentric contractions during the late stance phase as well as during the late swing phase of overground sprinting. The peak eccentric contraction speeds of the hamstring muscles were significantly greater during the late swing phase than during the late stance phase (p=0.001) while the hamstring muscle-tendon lengths at the peak eccentric contraction speeds were significantly greater during the late stance phase than during the late swing phase (p=0.001). No significant differences existed in the maximum hamstring muscle-tendon lengths between the two eccentric contractions. The potential for hamstring muscle strain injury exists during the late stance phase as well as during the late swing phases of overground sprinting.  相似文献   

14.
The kinematics of scapula and shoulder joint movements were analyzed in three species of arboreal quadrupedal primates using cineradiography. Our findings indicate that scapular movement is highly important for forelimb movement in primates with this ancestral mode of locomotion. Retroversion of the scapula (syn. caudal rotation or extension) during the stance phase contributes more than 40% to the stride length of the forelimb. Lateral forelimb excursions, a general feature for arboreal primates, are based on complex three-dimensional scapular movements guided by the clavicle. Humeral abduction is achieved by scapular abduction and transversal rotation of the scapula about its longitudinal axis, and is therefore strikingly different from humeral abduction in humans. At the same time, the movements of the shoulder joint are limited to flexion and extension only.  相似文献   

15.
A comparative analysis was made of the kinematics of movement and EMG activity during different types of locomotion before and after bilateral deafferentation of segments L1-S2 of the rat spinal cord. It was found that deafferentation is accompanied by a reduction in the amplitude of locomotor movements and by a delay in both the initiation and increase in duration of flexion in the knee and ankle joints during the swing phase, without producing much effect on the time course of hip joint flexion. An increase in the F period of the swing phase, at its lowest during swimming and highest during stepping, was also discovered, which accordingly rose in step with increasingly deficient afferent inflow. Flexor activity rose especially noticeably during dragging on the limb in the swing phase post-deafferentation. The role of peripheral afferent influence in shaping the F (swing) phase is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 654–659, September–October, 1987.  相似文献   

16.
We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion.  相似文献   

17.
Early ontogenetic stages are often assumed to reflect or to be similar to past phylogenetic stages within the evolution of man. Therefore, as a first step, the quadrupedal crawling locomotion of human children was analysed and compared to the quadrupedal walk of Macaca fascicularis. The movements of the human child were not only more irregular, they differed from the walk of the monkey mainly through extraordinarily short swing phases, and also through strong scoliotic movements of the spine. There is a compulsory synchronisation in the hip and knee joint movements of the human crawling baby. We conclude that human crawling may be a behavioural recapitulation of a quadrupedal evolutionary stage. However, with reference to kinematics, man is not only characterised by his unique, habitually bipedal, upright gait but also by a second, equally unique locomotion, namely crawling, which he assumes for a short phase during his first year of life.--The walking movements of the limbs in toddling infants were mainly characterised by i) rather stiff, abducted arms, which were moved mostly by spine torsions (similar to those of bipedally walking Gorilla) and not as a suspensory pendulum. However, they rather work as levers for the elastic torsion pendulum of the spine. ii) They are also characterised by frequently lacking the minor knee flexion, which occurs at about the heel strike within each stride of the adult human. Besides many other details of the results, foot movements differed from adult ones mainly in that the whole plantar surface was placed flat on the ground within a few milliseconds.  相似文献   

18.
Electromyography (EMG) is used to understand muscle activity patterns in animals. Understanding how much variation exists in muscle activity patterns in homologous muscles across animal clades during similar behaviours is important for evaluating the evolution of muscle functions and neuromuscular control. We compared muscle activity across a range of archosaurian species and appendicular muscles, including how these EMG patterns varied across ontogeny and phylogeny, to reconstruct the evolutionary history of archosaurian muscle activation during locomotion. EMG electrodes were implanted into the muscles of turkeys, pheasants, quail, guineafowl, emus (three age classes), tinamous and juvenile Nile crocodiles across 13 different appendicular muscles. Subjects walked and ran at a range of speeds both overground and on treadmills during EMG recordings. Anatomically similar muscles such as the lateral gastrocnemius exhibited similar EMG patterns at similar relative speeds across all birds. In the crocodiles, the EMG signals closely matched previously published data for alligators. The timing of lateral gastrocnemius activation was relatively later within a stride cycle for crocodiles compared to birds. This difference may relate to the coordinated knee extension and ankle plantarflexion timing across the swing-stance transition in Crocodylia, unlike in birds where there is knee flexion and ankle dorsiflexion across swing-stance. No significant effects were found across the species for ontogeny, or between treadmill and overground locomotion. Our findings strengthen the inference that some muscle EMG patterns remained conservative throughout Archosauria: for example, digital flexors retained similar stance phase activity and M. pectoralis remained an ‘anti-gravity’ muscle. However, some avian hindlimb muscles evolved divergent activations in tandem with functional changes such as bipedalism and more crouched postures, especially M. iliotrochantericus caudalis switching from swing to stance phase activity and M. iliofibularis adding a novel stance phase burst of activity.  相似文献   

19.
We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.  相似文献   

20.
This long-term study of woolly monkey (Lagothrix) locomotor and postural behaviour employs methods identical to those used during a previous study of the locomotion and posture of two species of Ateles, allowing a detailed comparison between the two genera, which are strong competitors in extensive parts of the Amazon basin and northern Andes. As in Ateles, Lagothrix locomotion can be divided into five patterns, based on limb usage: quadrupedal walking and running, suspensory locomotion, climbing, bipedalism (very rare in wild woolly monkeys) and leaping. Lagothrix differs from Ateles primarily in its greater reliance on quadrupedal locomotion during both travel and feeding and on its de-emphasis of the use of suspensory locomotion as compared to Ateles, while the use of climbing and leaping is roughly equal in the two genera. Lagothrix exhibits more generalised (primitive) locomotive behaviour in accordance with its morphology, in comparison to the more specialised Ateles. The generic differences reflect differences in habitat use and particularly foraging ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号