首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The inner ear and cochleovestibular ganglion (CVG) derive from a specialized region of head ectoderm termed the otic placode. During embryogenesis, the otic placode invaginates into the head to form the otic vesicle (OV), the primordium of the inner ear and CVG. Non-autonomous cell signaling from the hindbrain to the OV is required for inner ear morphogenesis and neurogenesis. In this study, we show that neuroepithelial cells (NECs), including neural crest cells (NCCs), can contribute directly to the OV from the neural tube. Using Wnt1-Cre, Pax3(Cre/+) and Hoxb1(Cre/+) mice to label and fate map cranial NEC lineages, we have demonstrated that cells from the neural tube incorporate into the otic epithelium after otic placode induction has occurred. Pax3(Cre/+) labeled a more extensive population of NEC derivatives in the OV than did Wnt1-Cre. NEC derivatives constitute a significant population of the OV and, moreover, are regionalized specifically to proneurosensory domains. Descendents of Pax3(Cre/+) and Wnt1-Cre labeled cells are localized within sensory epithelia of the saccule, utricle and cochlea throughout development and into adulthood, where they differentiate into hair cells and supporting cells. Some NEC derivatives give rise to neuroblasts in the OV and CVG, in addition to their known contribution to glial cells. This study defines a dual cellular origin of the inner ear from sensory placode ectoderm and NECs, and changes the current paradigm of inner ear neurosensory development.  相似文献   

2.
The role of Six1 in mammalian auditory system development   总被引:7,自引:0,他引:7  
The homeobox Six genes, homologues to Drosophila sine oculis (so) gene, are expressed in multiple organs during mammalian development. However, their roles during auditory system development have not been studied. We report that Six1 is required for mouse auditory system development. During inner ear development, Six1 expression was first detected in the ventral region of the otic pit and later is restricted to the middle and ventral otic vesicle within which, respectively, the vestibular and auditory epithelia form. By contrast, Six1 expression is excluded from the dorsal otic vesicle within which the semicircular canals form. Six1 is also expressed in the vestibuloacoustic ganglion. At E15.5, Six1 is expressed in all sensory epithelia of the inner ear. Using recently generated Six1 mutant mice, we found that all Six1(+/-) mice showed some degree of hearing loss because of a failure of sound transmission in the middle ear. By contrast, Six1(-/-) mice displayed malformations of the auditory system involving the outer, middle and inner ears. The inner ear development in Six1(-/-) embryos arrested at the otic vesicle stage and all components of the inner ear failed to form due to increased cell death and reduced cell proliferation in the otic epithelium. Because we previously reported that Six1 expression in the otic vesicle is Eya1 dependent, we first clarified that Eya1 expression was unaffected in Six1(-/-) otic vesicle, further demonstrating that the Drosophila Eya-Six regulatory cassette is evolutionarily conserved during mammalian inner ear development. We also analyzed several other otic markers and found that the expression of Pax2 and Pax8 was unaffected in Six1(-/-) otic vesicle. By contrast, Six1 is required for the activation of Fgf3 expression and the maintenance of Fgf10 and Bmp4 expression in the otic vesicle. Furthermore, loss of Six1 function alters the expression pattern of Nkx5.1 and Gata3, indicating that Six1 is required for regional specification of the otic vesicle. Finally, our data suggest that the interaction between Eya1 and Six1 is crucial for the morphogenesis of the cochlea and the posterior ampulla during inner ear development. These analyses establish a role for Six1 in early growth and patterning of the otic vesicle.  相似文献   

3.
During inner ear development programmed cell death occurs in specific areas of the otic epithelium but the significance of it and the molecules involved have remained unclear. We undertook an analysis of mouse mutants in which genes encoding apoptosis-associated molecules have been inactivated. Disruption of the Apaf1 gene led to a dramatic decrease in apoptosis in the inner ear epithelium, severe morphogenetic defects and a significant size reduction of the membranous labyrinth, demonstrating that an Apaf1-dependent apoptotic pathway is necessary for normal inner ear development. This pathway most probably operates through the apoptosome complex because caspase 9 mutant mice suffered similar defects. Inactivation of the Bcl2-like (Bcl2l) gene led to an overall increase in the number of cells undergoing apoptosis but did not cause any major morphogenetic defects. In contrast, decreased apoptosis was observed in specific locations that suffered from developmental deficits, indicating that proapoptotic isoform(s) produced from Bcl2l might have roles in inner ear development. In Apaf1(-/-)/Bcl2l(-/-) double mutant embryos, no cell death could be detected in the otic epithelium, demonstrating that the cell death regulated by the anti-apoptotic Bcl2l isoform, Bcl-X(L) in the otic epithelium is Apaf1-dependent. Furthermore, the otic vesicle failed to close completely in all double mutant embryos analyzed. These results indicate important roles for both Apaf1 and Bcl2l in inner ear development.  相似文献   

4.
The vertebrate inner ear, a complex sensory organ with vestibular and auditory functions, is derived from a single ectoderm structure called the otic placode. Currently, the molecular mechanisms governing the differentiation and specification of the otic epithelium are poorly understood. We present here a detailed expression study of LMO1-4 in the developing mouse inner ear using a combination of in situ hybridization and immunohistochemistry. LMO1 is specifically expressed in the vestibular and cochlear hair cells as well as the vestibular ganglia of the developing inner ear. LMO2 expression is detected in the periotic mesenchyme of the developing mouse cochlea from E12.5 to E14.5. The expression of LMO3 expression is first observed in the cochlea at E13.5 and becomes confined to the lesser epithelial ridge (LER) from E14.5 to E17.5. LMO3 is also expressed in some of the vestibular ganglion cells. LMO4 is initially expressed in the dorsolateral portion of the otic vesicle and its expression persists in the semicircular canals, macula, crista, and the spiral ganglia throughout embryogenesis. Thus, the regionalized expression patterns of LMO1-4 are closely associated with the morphogenesis of the inner ear.  相似文献   

5.
The otic vesicle (otocyst) occupies a pivotal position in inner ear development, bridging the gap between otic placode determination, and morphogenesis of vestibular and auditory compartments. The molecular mechanisms underlying the progressive subdivision of the developing inner ear into different compartments, and the molecular control and execution of the different developmental processes involved, are largely unknown. Since relatively few genes have been implicated in these processes, we have undertaken this study to identify genes involved in these early embryonic stages. We have used cDNA subtractions of mouse otic vesicle against adult liver cDNA, and describe a set of 280 candidate genes. We have also performed otic vesicle RNA hybridizations against DNA chips to not only confirm the efficacy of the library approach, but also to investigate the utility of DNA array alternatives. To begin to dissect potential developmental roles, we investigated the spatial pattern of gene expression for a selected set of 80 genes in developing mouse embryos at mid-gestation by whole-mount in situ hybridization. These data illustrate the compartmentalisation of gene expression in the otic vesicle for the majority of genes tested, and furthermore, implicate many of the genes tested with distinct developmental subprocesses.  相似文献   

6.
Six1 controls patterning of the mouse otic vesicle   总被引:3,自引:0,他引:3  
Six1 is a member of the Six family homeobox genes, which function as components of the Pax-Six-Eya-Dach gene network to control organ development. Six1 is expressed in otic vesicles, nasal epithelia, branchial arches/pouches, nephrogenic cords, somites and a limited set of ganglia. In this study, we established Six1-deficient mice and found that development of the inner ear, nose, thymus, kidney and skeletal muscle was severely affected. Six1-deficient embryos were devoid of inner ear structures, including cochlea and vestibule, while their endolymphatic sac was enlarged. The inner ear anomaly began at around E10.5 and Six1 was expressed in the ventral region of the otic vesicle in the wild-type embryos at this stage. In the otic vesicle of Six1-deficient embryos, expressions of Otx1, Otx2, Lfng and Fgf3, which were expressed ventrally in the wild-type otic vesicles, were abolished, while the expression domains of Dlx5, Hmx3, Dach1 and Dach2, which were expressed dorsally in the wild-type otic vesicles, expanded ventrally. Our results indicate that Six1 functions as a key regulator of otic vesicle patterning at early embryogenesis and controls the expression domains of downstream otic genes responsible for respective inner ear structures. In addition, cell proliferation was reduced and apoptotic cell death was enhanced in the ventral region of the otic vesicle, suggesting the involvement of Six1 in cell proliferation and survival. In spite of the similarity of otic phenotypes of Six1- and Shh-deficient mice, expressions of Six1 and Shh were mutually independent.  相似文献   

7.
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement.  相似文献   

8.
9.
10.
Neurons that connect mechanosensory hair cell receptors to the central nervous system derive from the otic vesicle from where otic neuroblasts delaminate and form the cochleovestibular ganglion (CVG). Local signals interact to promote this process, which is autonomous and intrinsic to the otic vesicle. We have studied the expression and activity of insulin-like growth factor-1 (IGF-1) during the formation of the chick CVG, focusing attention on its role in neurogenesis. IGF-1 and its receptor (IGFR) were detected at the mRNA and protein levels in the otic epithelium and the CVG. The function of IGF-1 was explored in explants of otic vesicle by assessing the formation of the CVG in the presence of anti-IGF-1 antibodies or the receptor competitive antagonist JB1. Interference with IGF-1 activity inhibited CVG formation in growth factor-free media, revealing that endogenous IGF-1 activity is essential for ganglion generation. Analysis of cell proliferation cell death, and expression of the early neuronal antigens Tuj-1, Islet-1/2, and G4 indicated that IGF-1 was required for survival, proliferation, and differentiation of an actively expanding population of otic neuroblasts. IGF-1 blockade, however, did not affect NeuroD within the otic epithelium. Experiments carried out on isolated CVG showed that exogenous IGF-1 induced cell proliferation, neurite outgrowth, and G4 expression. These effects of IGF-1 were blocked by JB1. These findings suggest that IGF-1 is essential for neurogenesis by allowing the expansion of a transit-amplifying neuroblast population and its differentiation into postmitotic neurons. IGF-1 is one of the signals underlying autonomous development of the otic vesicle.  相似文献   

11.
The rhombomere 4(r4)‐restricted expression of the mouse Hoxb2 gene is regulated by a 1.4‐kb enhancer‐containing fragment. Here, we showthat transgenic mouse lines expressing cre driven by this fragment (B2‐r4‐Cre), activated the R26R Cre reporter in rhombomere 4 and the second branchial arch, the epithelium of the first branchial arch, apical ectodermal ridge of the limb buds and the tail region. Of particular interest is Cre activity in the developing inner ear. Cre activity was found in the preotic field and otic placode at E8.5 and otocyst at E9.5–E12.5, in the cochleovestibular and facio‐acoustic ganglia at E10.5 and the vestibular and spiral ganglia and all the otic epithelia derived from the otocyst at E15.5 and P0. Our data suggest that the B2‐r4‐Cre transgenic mice provide an important tool for conditional gene manipulation and lineage tracing in the inner ear. In combination with other transgenic lines expressing cre exclusively in the otic vesicle, the relative contributions of the hindbrain, periotic mesenchyme and otic epithelium in otic development can be dissected. genesis 47:361–365, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The preceding paper (P. Bernd and J. Represa, 1989, Dev. Biol. 134) describes the characterization and localization of nerve growth factor (NGF) receptors in inner ear primordia, the otic vesicle (OV) and cochleovestibular ganglion (CVG), obtained from 72-hr (stage 19-20) quail embryos. The studies described in this paper investigated whether NGF serves as a mitogen, a survival factor, and/or a differentiation factor in this system. Explants of isolated OV and CVG were maintained for 24 hr in serum-free medium alone (M-199), M-199 containing serum, M-199 containing NGF, or M-199 containing both serum and NGF. [3H]Thymidine was also present for the entire culture period. Both OV and CVG incorporated greater amounts of [3H]thymidine in the presence of serum or NGF, and their combined effect was additive. NGF's effects were dose dependent, saturable, and specific (blocked by anti-NGF). NGF caused little or no morphological differentiation of OV and no increase in protein levels, in contrast to OV grown in the presence of serum. CVG had both cochlear and vestibular portions present in all cases, but the apparent size and protein content of CVG was increased in the presence of either serum or NGF. Effects of serum and NGF were completely, but reversibly, blocked by amiloride, suggesting that the Na+-H+ exchange system had been activated. In order to determine whether increases in [3H]thymidine incorporation were due to increased cell survival or perhaps to an increase in proliferation, explants were initially grown for a 24-hr period in serum-free medium, followed by reactivation for an additional 24 hr in medium containing serum and/or NGF. It is likely that cells requiring either serum or NGF for survival would die during a 24-hr period in their absence. Our results revealed that the level of [3H]thymidine incorporation in OV was the same after reactivation. In the case of CVG, only NGF treatment yielded similar results; [3H]thymidine incorporation was lower in CVG reactivated with serum. It appears, therefore, that serum has probable proliferative effects upon OV and CVG, as well as survival effects for CVG. NGF, however, does not appear to affect survival in either OV or CVG, so that increases in [3H]thymidine incorporation in response to NGF are most likely due to proliferative effects upon OV or CVG, at least at this embryonic stage.  相似文献   

13.
The valentino (val) mutation in zebrafish perturbs hindbrain patterning and, as a secondary consequence, also alters development of the inner ear. We have examined the relationship between these defects and expression of fgf3 and fgf8 in the hindbrain. The otic vesicle in val/val mutants is smaller than normal, yet produces nearly twice the normal number of hair cells, and some hair cells are produced ectopically between the anterior and posterior maculae. Anterior markers pax5 and nkx5.1 are expressed in expanded domains that include the entire otic epithelium juxtaposed to the hindbrain, and the posterior marker zp23 is not expressed. In the mutant hindbrain, expression of fgf8 is normal, whereas the domain of fgf3 expression expands to include rhombomere 4 through rhombomere X (an aberrant segment that forms in lieu of rhombomeres 5 and 6). Depletion of fgf3 by injection of antisense morpholino (fgf3-MO) suppresses the ear patterning defects in val/val embryos: Excess and ectopic hair cells are eliminated, expression of anterior otic markers is reduced or ablated, and zp23 is expressed throughout the medial wall of the otic vesicle. By contrast, disruption of fgf8 does not suppress the val/val phenotype but instead interacts additively, indicating that these genes affect distinct developmental pathways. Thus, the inner ear defects observed in val/val mutants appear to result from ectopic expression of fgf3 in the hindbrain. These data also indicate that val normally represses fgf3 expression in r5 and r6, an interpretation further supported by the effects of misexpressing val in wild-type embryos. This is in sharp contrast to the mouse, in which fgf3 is normally expressed in r5 and r6 because of positive regulation by kreisler, the mouse ortholog of val. Implications for co-evolution of the hindbrain and inner ear are discussed.  相似文献   

14.
Frenz DA  Liu W 《Teratology》2000,61(4):297-304
Background: Previous studies have shown that in utero exposure of the mouse embryo to high doses of all-trans-retinoic acid (atRA) produces defects of the developing inner ear and its surrounding cartilaginous capsule, while exposure of cultured periotic mesenchyme plus otic epithelium to high doses of exogenous atRA results in an inhibition of otic capsule chondrogenesis. Methods: In this study, we examine the effects of atRA exposure on the endogenous expression of transforming growth factor-beta(1) (TGF-beta(1)), a signaling molecule that mediates the epithelial-mesenchymal interactions that guide the development of the capsule of the inner ear. Results: Our results demonstrate a marked reduction in immunostaining for TGF-beta(1) in the periotic mesenchyme of atRA-exposed embryos of age E10.5 and E12 days in comparison with control specimens. Consistent with these in vivo findings, high-density cultures of E10.5 periotic mesenchyme plus otic epithelium, treated with doses of atRA that suppress chondrogenesis, showed significantly decreased levels of TGF-beta(1), as compared with TGF-beta(1) levels in untreated control cultures. Furthermore, we demonstrate a rescue of cultured periotic mesenchyme plus otic epithelium from atRA-induced chondrogenic suppression by supplementation of cultures with excess TGF-beta(1). Conclusions: Our results support the hypothesis that TGF-beta(1) plays a role in mechanisms of atRA teratogenicity during inner ear development.  相似文献   

15.
The inner ear of all jawed vertebrates arises from the epithelium of the otic vesicle and contains three semicircular canals, otoliths, and sets of sensory neurons, all positioned precisely within the cranium to detect head orientation and movement. The msh-C gene and two new homebox genes, msh-D and a gene related to distal-less, dlx-3, are each expressed in distinct regions of the otic vesicle during its early development in zebrafish embryos. Cells in the ectoderm express dlx-3 before induction of the otic vesicle, suggesting that dlx-3 has an early function in this process. Later, cells aligned with the future axes of the semicircular canals specifically express either dlx-3 or msh-D. Even later, sensory hair cells express msh-C and msh-D, while other cells of the epithelium express dlx-3. The early expression of these genes could specify the orientation and morphogenesis of the inner ear, whereas their later expression could specify the fates of particular cell types.  相似文献   

16.
Vertebrate inner ear develops from its rudiment, otic placode, which later forms otic vesicle and gives rise to tissues comprising the entire inner ear. Although several signaling molecules have been identified as candidates responsible for inner ear specification and patterning, many details remain elusive. Here, we report that Paraxial Protocadherin (PAPC) is required for otic vesicle formation in Xenopus embryos. PAPC is expressed strictly in presumptive otic placode and later in otic vesicle during inner ear morphogenesis. Knockdown of PAPC by dominant-negative PAPC results in the failure of otic vesicle formation and the loss of early inner ear markers Sox9 and Tbx2, suggesting the requirement of PAPC in the early stage of otic vesicle development. However, PAPC alone is not sufficient to induce otic placode formation.  相似文献   

17.
Requirements for FGF3 and FGF10 during inner ear formation   总被引:8,自引:0,他引:8  
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.  相似文献   

18.
Bone morphogenetic proteins (BMPs) are known to play roles in inner ear development of higher vertebrates. In zebrafish, there are several reports showing that members of the BMP family are expressed in the otic vesicle. We have isolated a novel zebrafish mutant gallery, which affects the development of the semicircular canal. Gallery merely forms the lateral and the immature anterior protrusion, and does not form posterior and ventral protrusions. We found that the expression of bmp2b and bmp4, both expressed in the normal optic vesicle at the protrusion stage, are extremely upregulated in the otic vesicle of gallery. To elucidate the role of BMPs in the development of the inner ear of zebrafish, we have applied excess BMP to the wild-type otic vesicle. The formation of protrusions was severely affected, and in some cases, they were completely lost in BMP4-treated embryos. Furthermore, the protrusions in gallery treated with Noggin were partially rescued. These data indicate that BMP4 plays an important role in the development of protrusions to form semicircular canals.  相似文献   

19.
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.  相似文献   

20.
The verterbrate inner ear is an excellent model system to study signalling mechanisms in embryonic development. During the last years, insulin-like growth factor-I (IGF-I) has attracted attention in relation to the regulation of inner ear ontogenesis. IGF-I and its high-affinity tyrosine-kinase receptor are expressed during early stages of inner ear development. IGF-I is a powerful mitogen for the otic vesicle, where it stimulates cell-division and mitogenic signalling cascades. Later in development, IGF-I also promotes survival and neurogenesis of the otic neurones in the cochleovestibular ganglion (CVG). The actions of IGF-I are associated with the generation of lipidic messengers and the activation of Raf kinase, which results in the rapid induction of the expression of the proliferative cell nuclear antigen (PCNA) and the nuclear proto-oncogenes c-fos and c-jun. Regulation of organogenesis involves a dynamic balance of the mechanisms regulating cell division, differentiation and death. A model is proposed where this balance is the consequence of the action of IGF-I and NGF, which converge in Raf activation or suppression. The combinatorial expression of jun and Fos family members in particular domains of the otic vesicle would be the final result of such cascade. Some of these mechanisms may be also implicated in otic regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号