首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.  相似文献   

2.
Poly(A)-binding protein-interacting protein 1 (Paip1) stimulates translational initiation by inducing the circularization of mRNA. However, the mechanisms underlying Paip1 regulation, particularly its protein stability, are still unclear. Here, we show that the E6AP carboxyl terminus (HECT)-type ubiquitin ligase WW domain-containing protein 2 (WWP2), a homolog of the HECT-type ubiquitin ligase WWP1, interacts with and targets Paip1 for ubiquitination and proteasomal degradation. Mapping of the region including the WW domain of WWP2 revealed the interaction between WWP2 and the PABP-binding motif 2 (PAM2) of Paip1. The two consecutive PXXY motifs in PAM2 are required for WWP2-mediated ubiquitination and degradation. Furthermore, ectopic expression of WWP2 decreases translational stimulatory activity with the degradation of Paip1. We therefore provide evidence that the stability of Paip1 can be regulated by ubiquitin-mediated degradation, thus highlighting the importance of WWP2 as a suppressor of translation.  相似文献   

3.
Latent membrane protein 2A (LMP2A) is expressed in latent Epstein-Barr virus (EBV) infection. We have demonstrated that Nedd4 family ubiquitin-protein ligases (E3s), AIP4, WWP2/AIP2, and Nedd4, bind specifically to two PY motifs present within the LMP2A amino-terminal domain. In this study, LMP2A PY motif mutant viruses were constructed to investigate the role of the LMP2A PY motifs. AIP4 was found to specifically associate with the LMP2A PY motifs in EBV-transformed lymphoblastoid cell lines (LCLs), extending our original observation to EBV-infected cells. Mutation of both of the LMP2A PY motifs resulted in an absence of binding of AIP4 to LMP2A, which resulted in an increase in the expression of Lyn and the constitutive hyperphosphorylation of LMP2A and an unknown 120-kDa protein. In addition, there was a modest increase in the constitutive phosphorylation of Syk and an unidentified 60-kDa protein. These results indicate that the PY motifs contained within LMP2A are important in regulating phosphorylation in EBV-infected LCLs, likely through the regulation of Lyn activity by specifically targeting the degradation of Lyn by ubiquination by Nedd4 family E3s. Despite differences between PY motif mutant LCLs and wild-type LCLs, the PY motif mutants still exhibited a block in B-cell receptor (BCR) signal transduction as measured by the induction of tyrosine phosphorylation and BZLF1 expression following BCR activation. EBV-transformed LCLs with mutations in the PY motifs were not different from wild-type LCLs in serum-dependent cell growth. Protein stability of LMP1, which colocalizes with LMP2A, was not affected by the LMP2A-associated E3s.  相似文献   

4.
The voltage-gated Na+ channels (Nav) form a family composed of 10 genes. The COOH termini of Nav contain a cluster of amino acids that are nearly identical among 7 of the 10 members. This COOH-terminal sequence, PPSYDSV, is a PY motif known to bind to WW domains of E3 protein-ubiquitin ligases of the Nedd4 family. We recently reported that cardiac Nav1.5 is regulated by Nedd4-2. In this study, we further investigated the molecular determinants of regulation of Nav proteins. When expressed in HEK-293 cells and studied using whole cell voltage clamping, the neuronal Nav1.2 and Nav1.3 were also downregulated by Nedd4-2. Pull-down experiments using fusion proteins bearing the PY motif of Nav1.2, Nav1.3, and Nav1.5 indicated that mouse brain Nedd4-2 binds to the Nav PY motif. Using intrinsic tryptophan fluorescence imaging of WW domains, we found that Nav1.5 PY motif binds preferentially to the fourth WW domain of Nedd4-2 with a Kd of 55 µM. We tested the binding properties and the ability to ubiquitinate and downregulate Nav1.5 of three Nedd4-like E3s: Nedd4-1, Nedd4-2, and WWP2. Despite the fact that along with Nedd4-2, Nedd4-1 and WWP2 bind to Nav1.5 PY motif, only Nedd4-2 robustly ubiquitinated and downregulated Nav1.5. Interestingly, coexpression of WWP2 competed with the effect of Nedd4-2. Finally, using brefeldin A, we found that Nedd4-2 accelerated internalization of Nav1.5 stably expressed in HEK-293 cells. This study shows that Nedd4-dependent ubiquitination of Nav channels may represent a general mechanism regulating the excitability of neurons and myocytes via modulation of channel density at the plasma membrane. ubiquitin; Nedd4-2; PY motif; Nav1.5; human ether-à-go-go-related gene  相似文献   

5.
6.
Previous studies have characterized interactions between the ubiquitin ligase Nedd4-1 and the epithelial Na+ channel (ENaC). Such interactions control the channel cell surface expression and activity. Recently, evidence has been provided that a related protein, termed Nedd4-2, is likely to be the true physiological regulator of the channel. Unlike Nedd4-1, Nedd4-2 also interacts with the aldosterone-induced channel activating kinase sgk-1. The current study uses surface plasmon resonance to quantify the binding of the four WW domains of Nedd4-2 to synthetic peptides corresponding to the PY motifs of ENaC and sgk-1. The measurements demonstrate that WW3 and WW4 are the only Nedd4-2 domains interacting with both ENaC and sgk-1 and that their binding constants are in the 1-6 μM range.  相似文献   

7.
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.  相似文献   

8.
The ClC-5 chloride channel resides mainly in vesicles of the endocytotic pathway and contributes to their acidification. Its disruption in mice entails a broad defect in renal endocytosis and causes secondary changes in calciotropic hormone levels. Inactivating mutations in Dent's disease lead to proteinuria and kidney stones. Possibly by recycling, a small fraction of ClC-5 also reaches the plasma membrane. Here we identify a carboxyl-terminal internalization motif in ClC-5. It resembles the PY motif, which is crucial for the endocytosis and degradation of epithelial Na(+) channels. Mutating this motif increases surface expression and currents about 2-fold. This is probably because of interactions with WW domains, because dominant negative mutants of the ubiquitin-protein ligase WWP2 increased surface expression and currents of ClC-5 only when its PY motif was intact. Stimulating endocytosis by expressing rab5 or its GTPase-deficient Q79L mutant decreased WT ClC-5 currents but did not affect channels with mutated motifs. Similarly, decreasing endocytosis by expressing the inactive S34N mutant of rab5 increased ClC-5 currents only if its PY-like motif was intact. Thus, the endocytosis of ClC-5, which itself is crucial for the endocytosis of other proteins, depends on the interaction of a carboxyl-terminal internalization signal with ubiquitin-protein ligases containing WW domains.  相似文献   

9.
10.
Nedd4-1 (neuronal precursor cell expressed developmentally downregulated gene 4-1) is an E3 ubiquitin ligase that interacts with and negatively regulates the epithelial Na+ channel (ENaC). The WW domains of Nedd4-1 bind to the ENaC subunits via recognition of PY motifs. Human Nedd4-1 (hNedd4-1) contains four WW domains with the third domain (WW3*) showing the strongest affinity to the PY motif. To understand the mechanism underlying this binding affinity, we have carried out NMR structural and dynamics analyses of the hNedd4-1 WW3* domain in complex with a peptide comprising the C-terminal tail of the human ENaC α-subunit. The structure reveals that the peptide interacts in a similar manner to other WW domain–ENaC peptide structures. Crucial interactions that likely provide binding affinity are the broad XP groove facilitating additional contacts between the WW3* domain and the peptide, compared to similar complexes, and the large surface area buried (83 Å2) between R430 (WW3*) and L647′ (αENaC). This corroborates the model-free analysis of the 15N backbone relaxation data, which showed that R430 is the most rigid residue in the domain (S2 = 0.90 ± 0.01). Carr–Purcell–Meiboom–Gill relaxation dispersion analysis identified two different conformational exchange processes on the μs–ms time-scale. One of these processes involves residues located at the peptide binding interface, suggesting conformational exchange may play a role in peptide recognition. Thus, both structural and dynamic features of the complex appear to define the high binding affinity. The results should aid interpretation of biochemical data and modeling interfaces between Nedd4-1 and other interacting proteins.  相似文献   

11.
Smurf2 is an E3 ubiquitin ligase that drives degradation of the transforming growth factor-beta receptors and other targets. Recognition of the receptors by Smurf2 is accomplished through an intermediary protein, Smad7. Here we have demonstrated that the WW3 domain of Smurf2 can directly bind to the Smad7 polyproline-tyrosine (PY) motif. Of particular interest, the highly conserved WW domain binding site Trp, which interacts with target PY motifs, is a Phe in the Smurf2 WW3 domain. To examine this interaction, the solution structure of the complex between the Smad7 PY motif region (ELESPPPPYSRYPMD) and the Smurf2 WW3 domain was determined. The structure reveals that, in addition to binding the PY motif, the WW3 domain binds six residues C-terminal to the PY motif (PY-tail). Although the Phe in the WW3 domain binding site decreases affinity relative to the canonical Trp, this is balanced by additional interactions between the PY-tail and the beta1-strand and beta1-beta2 loop of the WW3 domain. The interaction between the Smurf2 WW3 domain and the Smad7 PY motif is the first example of PY motif recognition by a WW domain with a Phe substituted for the binding site Trp. This unusual interaction allows the Smurf2 WW3 domain to recognize a subset of PY motif-containing proteins utilizing an expanded surface to provide specificity.  相似文献   

12.

Background

Toll-like receptors (TLRs) play a pivotal role in the defense against invading pathogens by detecting pathogen-associated molecular patterns (PAMPs). TLR4 recognizes lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, resulting in the induction and secretion of proinflammatory cytokines such as TNF-α and IL-6. The WW domain containing E3 ubiquitin protein ligase 1 (WWP1) regulates a variety of cellular biological processes. Here, we investigated whether WWP1 acts as an E3 ubiquitin ligase in TLR-mediated inflammation.

Methodology/Results

Knocking down WWP1 enhanced the TNF-α and IL-6 production induced by LPS, and over-expression of WWP1 inhibited the TNF-α and IL-6 production induced by LPS, but not by TNF-α. WWP1 also inhibited the IκB-α, NF-κB, and MAPK activation stimulated by LPS. Additionally, WWP1 could degrade TRAF6, but not IRAK1, in the proteasome pathway, and knocking down WWP1 reduced the LPS-induced K48-linked, but not K63-linked, polyubiquitination of endogenous TRAF6.

Conclusions/Significance

We identified WWP1 as an important negative regulator of TLR4-mediated TNF-α and IL-6 production. We also showed that WWP1 functions as an E3 ligase when cells are stimulated with LPS by binding to TRAF6 and promoting K48-linked polyubiquitination. This results in the proteasomal degradation of TRAF6.  相似文献   

13.
Seo MD  Park SJ  Kim HJ  Lee BJ 《FEBS letters》2007,581(1):65-70
Epstein-Barr virus latency is maintained by the latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. The cytoplasmic N-terminal domain of LMP2A is composed of 119 amino acids. The N-terminal domain of LMP2A (LMP2A NTD) contains two PY motifs (PPPPY) that interact with the WW domains of Nedd4 family ubiquitin-protein ligases. Based on our analysis of NMR data, we found that the LMP2A NTD adopts an overall random-coil structure in its native state. However, the region between residues 60 and 90 was relatively ordered, and seemed to form the hydrophobic core of the LMP2A NTD. This region resides between two PY motifs and is important for WW domain binding. Mapping of the residues involved in the interaction between the LMP2A NTD and WW domains was achieved by chemical shift perturbation, by the addition of WW2 and WW3 peptides. Interestingly, the binding of the WW domains mainly occurred in the hydrophobic core of the LMP2A NTD. In addition, we detected a difference in the binding modes of the two PY motifs against the two WW peptides. The binding of the WW3 peptide caused the resonances of five residues (Tyr(60), Glu(61), Asp(62), Trp(65), and Gly(66)) just behind the N-terminal PY motif of the LMP2A NTD to disappear. A similar result was obtained with WW2 binding. However, near the C-terminal PY motif, the chemical shift perturbation caused by WW2 binding was different from that due to WW3 binding, indicating that the residues near the PY motifs are involved in selective binding of WW domains. The present work represents the first structural study of the LMP2A NTD and provides fundamental structural information about its interaction with ubiquitin-protein ligase.  相似文献   

14.
In addition to its well-known role in recognition by the proteasome, ubiquitin-conjugation is also involved in downregulation of membrane receptors, transporters and channels. In most cases, ubiquitination of these plasma membrane proteins leads to their internalization followed by targeting to the lysosome/vacuole for degradation. A crucial role in ubiquitination of many plasma membrane proteins appears to be played by ubiquitin-protein ligases of the Nedd4/Rsp5p family. All family members carry an N-terminal Ca2+-dependent lipid/protein binding (C2) domain, two to four WW domains and a C-terminal catalytic Hect-domain. Nedd4 is involved in downregulation of the epithelial Na+ channel, by binding of its WW domains to specific PY motifs of the channel. Rsp5p, the unique family member in S. cerevisiae, is involved in ubiquitin-dependent endocytosis of a great number of yeast plasma membrane proteins. These proteins lack apparent PY motifs, but carry acidic sequences, and/or phosphorylated-based sequences that might be important, directly or indirectly, for their recognition by Rsp5p. In contrast to polyubiquitination leading to proteasomal recognition, a number of Rsp5p targets carry few ubiquitins per protein, and moreover with a different ubiquitin linkage. Accumulating evidence suggests that, at least in yeast, ubiquitin itself may constitute an internalization signal, recognized by a hypothetical receptor. Recent data also suggest that Nedd4/Rsp5p might play a role in the endocytic process possibly involving its C2 domain, in addition to its role in ubiquitinating endocytosed proteins. Recieved: 19 January 2000/Revised: 6 April 2000  相似文献   

15.
The cardiac voltage-gated Na+ channel H1, involved in the generation of cardiac action potential, contains a C-terminal PY motif (xPPxY). Since PY motifs are known ligands to WW domains, we investigated their role for H1 regulation and the possible involvement of the WW domain containing ubiquitin-protein ligase Nedd4, taking advantage of the Xenopus oocyte system. Mutation of the PY motif leads to higher peak currents when compared to wild-type channel. Moreover, co-expression of Nedd4 reduced the peak currents, whereas an enzymatically inactive Nedd4 mutant increased them, likely by competing with endogenous Nedd4. The effect of Nedd4 was not observed in the PY motif mutated channel or in the skeletal muscle voltage-gated Na+ channel, which lacks a PY motif. We conclude that H1 may be regulated by Nedd4 depending on WW-PY interaction, and on an active ubiquitination site.  相似文献   

16.
The PPPY motif in the matrix (MA) domain of human T-cell leukemia virus type 1 (HTLV-1) Gag associates with WWP1, a member of the HECT domain containing family of E3 ubiquitin ligases. Mutation of the PPPY motif arrests particle assembly at an early stage and abolishes ubiquitination of MA. Similar effects are seen when Gag is expressed in the presence of a truncated form of WWP1 that lacks the catalytically active HECT domain (C2WW). To understand the role of ubiquitination in budding, we mutated the four lysines in MA to arginines and identified lysine 74 as the unique site of ubiquitination. Virus-like particles produced by the K74R mutant did not contain ubiquitinated MA and showed a fourfold reduction in the release of infectious particles. Furthermore, the K74R mutation rendered assembly hypersensitive to C2WW inhibition; K74R Gag budding was inhibited at significantly lower levels of expression of C2WW compared with wild-type Gag. This finding indicates that the interaction between Gag and WWP1 is required for functions other than Gag ubiquitination. Additionally, we show that the PPPY mutant Gag exerts a strong dominant-negative effect on the budding of wild-type Gag, further supporting the importance of recruitment of WWP1 to achieve particle assembly.  相似文献   

17.
Although E3 ubiquitin ligases are deemed to play key roles in normal cell function and homeostasis, whether their alterations contribute to cancer pathogenesis remains unclear. In this study, we sought to investigate potential mechanisms that govern WWP1/Tiul1 (WWP1) ubiquitin ligase activity, focusing on its ability to trigger degradation of TGFβ type I receptor (TβRI) in conjunction with Smad7. Our data reveal that the WWP1 protein is very stable at steady states because its autopolyubiquitination activity is silenced due to an intra-interaction between the C2 and/or WW and Hect domains that favors WWP1 monoubiquitination at the expense of its polyubiquitination or polyubiquitination of TβRI. Upon binding of WWP1 to Smad7, this functional interplay is disabled, switching its monoubiquitination activity toward a polyubiquitination activity, thereby driving its own degradation and that of TβRI as well. Intriguingly, a WWP1 point mutation found in human prostate cancer disrupts this regulatory mechanism by relieving the inhibitory effects of C2 and WW on Hect and thereby causing WWP1 hyperactivation. That cancer-driven alteration of WWP1 culminates in excessive TβRI degradation and attenuated TGFβ cytostatic signaling, a consequence that could conceivably confer tumorigenic properties to WWP1.  相似文献   

18.
Nedd4 is a ubiquitin protein ligase composed of a C2 domain, three (or four) WW domains and a ubiquitin ligase Hect domain. Nedd4 was demonstrated to bind the epithelial sodium channel (alphabetagammaENaC), by association of its WW domains with PY motifs (XPPXY) present in each ENaC subunit, and to regulate the cell surface stability of the channel. The PY motif of betaENaC is deleted or mutated in Liddle syndrome, a hereditary form of hypertension caused by elevated ENaC activity. Here we report the solution structure of the third WW domain of Nedd4 complexed to the PY motif-containing region of betaENaC (TLPIPGTPPPNYDSL, referred to as betaP2). A polyproline type II helical conformation is adopted by the PPPN sequence. Unexpectedly, the C-terminal sequence YDSL forms a helical turn and both the tyrosine and the C-terminal leucine contact the WW domain. This is unlike other proline-rich peptides complexed to WW domains, which bind in an extended conformation and lack molecular interactions with residues C-terminal to the tyrosine or the structurally equivalent residue in non-PY motif WW domain targets. The Nedd4 WW domain-ENaC betaP2 peptide structure expands our understanding of the mechanisms involved in WW domain-ligand recognition and the molecular basis of Liddle syndrome.  相似文献   

19.
Na+/H+ exchanger NHE3 expressed in the intestine and kidney plays a major role in NaCl and HCO3 absorption that is closely linked to fluid absorption and blood pressure regulation. The Nedd4 family of E3 ubiquitin ligases interacts with a number of transporters and channels via PY motifs. A comparison of NHE3 sequences revealed the presence of PY motifs in NHE3s from human and several non-human primates but not in non-primate NHE3s. In this study we evaluated the differences between human and non-primate NHE3s in ubiquitination and interaction with Nedd4-2. We found that Nedd4-2 ubiquitinated human NHE3 (hNHE3) and altered its expression and activity. Surprisingly, rat NHE3 co-immunoprecipitated Nedd4-2, but its expression and activity were not altered by silencing of Nedd4-2. Ubiquitination by Nedd4-2 rendered hNHE3 to undergo internalization at a significantly greater rate than non-primate NHE3s without altering protein stability. Insertion of a PY motif in rabbit NHE3 recapitulated the interaction with Nedd4-2 and enhanced internalization. Thus, we propose a new model where disruption of Nedd4-2 interaction elevates hNHE3 expression and activity.  相似文献   

20.
The HECT-type E3 Smad ubiquitination regulation factor 1 (Smurf1) functions in regulation of cell polarity and bone homeostasis by targeting Smads, Runx2, RhoA and MEKK2 for ubiquitination and degradation. In a yeast two-hybrid screening, we identified TNF receptor-associated factor 4 (TRAF4) as a candidate substrate and was further validated. The PY motifs of TRAF4 mediated the interaction with the second WW domain of Smurf1. Overexpression of Smurf1 reduced the protein levels of TRAF4 dependent of its E3 activity and the proteasome. Further, we showed that all six members of TRAF family could be ubiquitinated by Smurf1. Consequently, Smurf1 interfered with the functions of TRAFs in NF-κB signaling under stimulation or not. These results suggested a new role of Smurf1 in inflammation and immunity through controlling the degradation of TRAFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号