首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides.  相似文献   

3.
Karenia brevis is a toxic marine dinoflagellate endemic to the Gulf of Mexico. Blooms of this harmful alga cause fish kills, marine mammal mortalities and neurotoxic shellfish poisonings. These harmful effects are attributed to a suite of polyketide secondary metabolites known as the brevetoxins. The carbon framework of all polyketides is assembled by a polyketide synthase (PKS). Previously, PKS encoding genes were amplified from K. brevis culture and their similarity to a PKS gene from the closely related protist, Cryptosporidium parvum, suggested that these genes originate from the dinoflagellate. However, K. brevis has not been grown axenically. The associated bacteria might be the source of the toxins or the PKS genes. Herein we report the localization of PKS encoding genes by a combination of flow cytometry/PCR and fluorescence in situ hybridization (FISH). Two genes localized exclusively to K. brevis cells while a third localized to both K. brevis and associated bacteria. While these genes have not yet been linked to toxin production, the work describes the first definitive evidence of resident PKS genes in any dinoflagellate.  相似文献   

4.
Myxobacterial strains producing polyketides (PKs) assumed to be biosynthesized by a type I polyketide synthase (PKS) were analysed. Myxobacteria also produce a variety of polypeptides (PP) and PKs with incorporated amino acids ('mixed PK-PP'). In order to be able to identify the biosynthetic gene clusters for these metabolites a PCR based approach has been developed to clone ketosynthase (KS) domains of PKS genes from these organisms. Conserved regions of peptide synthetases of the non-ribosomal type (NRPS) were also amplified via PCR. KS fragments from Stigmatella aurantiaca Sg a15 were used for chromosomal gene inactivation experiments resulting in a series of mutants including such that were unable to produce stigmatellins and myxalamids. A NRPS fragment and PKS fragments from Sorangium cellulosum So ce90 were used to identify cosmids hybridizing with both types of probes from a genomic library. Both a NRPS and a PKS fragment were cloned and sequenced from a relatively short restriction fragment of one of these cosmids. The method described here should be very useful to clone and identify PKS, NRPS and mixed PKS-NRPS from myxobacteria in general and thereby open opportunities to use the biochemical diversity of these bacteria for genetic engineering and combinatorial biosynthesis.  相似文献   

5.
The biosynthetic gene cluster for the 26-membered ring of the polyene macrolide pimaricin extends for about 110 kilobase pairs of contiguous DNA in the genome of Streptomyces natalensis. Two sets of polyketide synthase (PKS) genes are separated by a group of small polyketide-functionalizing genes. Two of the polyketide synthase genes, pimS0 and pimS1, have been fully sequenced and disrupted proving the involvement of each of these genes in pimaricin biosynthesis. The pimS0 gene encodes a relatively small acetate-activating PKS (approximately 193 kDa) that appears to work as a loading protein which "presents" the starter unit to the second PKS subunit. The pimS1 gene encodes a giant multienzyme (approximately 710 kDa) harboring 15 activities responsible for the first four cycles of chain elongation in pimaricin biosynthesis, resulting in formation of the polyene chromophore.  相似文献   

6.
Lichenized and non-lichenized filamentous ascomycetes produce a great variety of polyketide secondary metabolites. Some polyketide synthase (PKS) genes from non-lichenized fungi have been characterized, but the function of PKS genes from lichenized species remains unknown. Phylogenetic analysis of keto synthase (KS) domains allows prediction of the presence or absence of particular domains in the PKS gene. In the current study we screened genomic DNA from lichenized fungi for the presence of non-reducing and 6-methylsalicylic acid synthase (6-MSAS)-type PKS genes. We developed new degenerate primers in the acyl transferase (AT) region to amplify a PKS fragment spanning most of the KS region, the entire linker between KS and AT, and half of the AT region. Phylogenetic analysis shows that lichenized taxa possess PKS genes of the 6-MSAS-type. The extended alignment confirms overall phylogenetic relationships between fungal non-reducing, 6-MSAS-type and bacterial type I PKS genes.  相似文献   

7.
Santi DV  Siani MA  Julien B  Kupfer D  Roe B 《Gene》2000,247(1-2):97-102
An approach is described for obtaining 'perfect probes' for type I modular polyketide synthase (PKS) gene clusters that in turn enables the identification of all such gene clusters in a genome. The approach involves sequencing small fragments of a random genomic DNA library containing one or more modular PKS gene clusters, and identifying which fragments emanate from PKS genes. Knowing the approximate sizes of the genome and the target gene cluster, one can predict the the frequency that a PKS gene fragment will be present in the library sequenced. Computer simulations of the approach were applied to the known PKS and non-ribosomal peptide synthetase (NRPS) gene clusters in the Bacillus subtilus genome. The approach was then used to identify PKS gene fragments in a strain of Sorangium cellulosum that produces epothilone. In addition to identifying fragments of the epothilone gene cluster, we obtained 11 unique fragments from other PKS gene clusters; the results suggest that there may be six to eight PKS gene clusters in this organism. In addition, we identified four unique fragments of NRPS genes, demonstrating that the approach is also applicable for identification of these modular gene clusters.  相似文献   

8.
MOTIVATION: The genome of the social amoeba Dictyostelium discoideum contains an unusually large number of polyketide synthase (PKS) genes. An analysis of the genes is a first step towards understanding the biological roles of their products and exploiting novel products. RESULTS: A total of 45 Type I iterative PKS genes were found, 5 of which are probably pseudogenes. Catalytic domains that are homologous with known PKS sequences as well as possible novel domains were identified. The genes often occurred in clusters of 2-5 genes, where members of the cluster had very similar sequences. The D.discoideum PKS genes formed a clade distinct from fungal and bacterial genes. All nine genes examined by RT-PCR were expressed, although at different developmental stages. The promoters of PKS genes were much more divergent than the structural genes, although we have identified motifs that are unique to some PKS gene promoters.  相似文献   

9.
Lichenized fungi synthesize a great variety of secondary metabolites. These are typically crystalline compounds, which are deposited extracellularly on the fungal hyphae. While we know a lot about the chemical properties and structures of these substances, we have very little information on the molecular background of their biosynthesis. In the current study we analyze the diversity of non-reducing polyketide synthase (PKS) genes in members of the lichenized Pertusariales. This order primarily contains fully oxidized secondary metabolites from different substance classes, and is chemically and phylogenetically well studied. Using a degenerate primer approach with subsequent cloning we detected up to five non-reducing PKS sequences in a single PCR product. Eighty-five new KS sequence fragments were obtained for this study. Analysis of the 157 currently available fungal KS sequence fragments in a Bayesian phylogenetic framework revealed 18 highly supported clades that included only lichenized taxa, only non-lichenized taxa, or both. Some Pertusarialean groupings of PKS sequences corresponded partly to phylogenetic groupings based on ribosomal DNA. This is reasonable, because a correlation between well-supported phylogenetic lineages and the occurrence of secondary metabolites in the Pertusariales has been observed before. However, no clear linkage was found between the PKS genes analyzed and the ability to produce a particular secondary substance. Several PKS clades did not reveal obvious patterns of secondary compound distribution or phylogenetic association. Compared with earlier phylogenetic analyses of KS sequences the increased sampling in the current study allowed us to detect many new groupings within the fungal non-reducing PKSs.  相似文献   

10.
Natural products are a functionally diverse class of biochemically synthesized compounds, which include antibiotics, toxins, and siderophores. In this paper, we describe both the detection of natural product activities and the sequence identification of gene fragments from two molecular systems that have previously been implicated in natural product production, i.e., nonribosomal peptide synthetases (NRPSs) and modular polyketide synthases (PKSs), in diverse marine and freshwater cyanobacterial cultures. Using degenerate PCR and the sequencing of cloned products, we show that NRPSs and PKSs are common among the cyanobacteria tested. Our molecular data, when combined with genomic searches of finished and progressing cyanobacterial genomes, demonstrate that not all cyanobacteria contain NRPS and PKS genes and that the filamentous and heterocystous cyanobacteria are the richest sources of these genes and the most likely sources of novel natural products within the phylum. In addition to validating the use of degenerate primers for the identification of PKS and NRPS genes in cyanobacteria, this study also defines numerous gene fragments that will be useful as probes for future studies of the synthesis of natural products in cyanobacteria. Phylogenetic analyses of the cyanobacterial NRPS and PKS fragments sequenced in this study, as well as those from the cyanobacterial genome projects, demonstrate that there is remarkable diversity and likely novelty of these genes within the cyanobacteria. These results underscore the potential variety of novel products being produced by these ubiquitous organisms.  相似文献   

11.
A previously unidentified set of genes encoding a modular polyketide synthase (PKS) has been sequenced in Saccharopolyspora erythraea, producer of the antibiotic erythromycin. This new PKS gene cluster (pke) contains four adjacent large open reading frames (ORFs) encoding eight extension modules, flanked by a number of other ORFs which can be plausibly assigned roles in polyketide biosynthesis. Disruption of the pke PKS genes gave S. erythraea mutant JC2::pSBKS6, whose growth characteristics and pattern of secondary metabolite production did not apparently differ from the parent strain under any of the growth conditions tested. However, the pke PKS loading module and individual pke acyltransferase domains were shown to be active when used in engineered hybrid PKSs, making it highly likely that under appropriate conditions these biosynthetic genes are indeed expressed and active, and synthesize a novel polyketide product.  相似文献   

12.
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity.  相似文献   

13.
PCR screening of type I polyketidesynthase genes (PKS) was conducted in genomes of actinomycetes, producers of antibiotics. Some DNA fragments from the Streptomyces globisporus 1912 strain, a producer of a novel angucycline antibiotic landomycin E, were amplified. These fragments shared appreciable homology with type I PKS controlling the biosynthesis of polyene antibiotics (pymaricin and nistatin). The cloned regions were used to inactivate putative type I PKS genes in S. globisporus 1912. Strains with inactivated genes of PKS module do not differ from the original strain in the spectrum of synthesized polyketides. Apparently, these are silent genes, which require specific induction for their expression. The method of PCR screening can be used in a large-scale search for producers of new antibiotics.  相似文献   

14.
Geldanamycin and the closely related herbimycins A, B, and C were the first benzoquinone ansamycins to be extensively studied for their antitumor properties as small-molecule inhibitors of the Hsp90 protein chaperone complex. These compounds are produced by two different Streptomyces hygroscopicus strains and have the same modular polyketide synthase (PKS)-derived carbon skeleton but different substitution patterns at C-11, C-15, and C-17. To set the stage for structural modification by genetic engineering, we previously identified the gene cluster responsible for geldanamycin biosynthesis. We have now cloned and sequenced a 115-kb segment of the herbimycin biosynthetic gene cluster from S. hygroscopicus AM 3672, including the genes for the PKS and most of the post-PKS tailoring enzymes. The similarities and differences between the gene clusters and biosynthetic pathways for these closely related ansamycins are interpreted with support from the results of gene inactivation experiments. In addition, the organization and functions of genes involved in the biosynthesis of the 3-amino-5-hydroxybenzoic acid (AHBA) starter unit and the post-PKS modifications of progeldanamycin were assessed by inactivating the subclusters of AHBA biosynthetic genes and two oxygenase genes (gdmM and gdmL) that were proposed to be involved in formation of the geldanamycin benzoquinoid system. A resulting novel geldanamycin analog, KOS-1806, was isolated and characterized.  相似文献   

15.
Polyketide synthase (PKS) enzymes are large multi-domain complexes that structurally and functionally resemble the fatty acid synthases involved in lipid metabolism. Polyketide biosynthesis of secondary metabolites and hence functional PKS genes are widespread among bacteria, fungi and streptophytes, but the Type I was formerly known only from bacteria and fungi. Recently Type I PKS genes were also uncovered in the genomes of some alveolate protists. Here we show that the newly sequenced genomes of representatives of other protist groups, specifically the chlorophytes Ostreococcus tauri, O. lucimarinus, and Chlamydomonas reinhardtii, and the haptophyte Emiliania huxleyi also contain putative modular Type I PKS genes. Based on the patchy phylogenetic distribution of this gene type among eukaryotic microorganisms, the question arises whether they originate from recent lateral gene transfer from bacteria. Our phylogenetic analyses do not indicate such an evolutionary history. Whether Type I PKS genes originated several times independently during eukaryotic evolution or were rather lost in many extant lineages cannot yet be answered. In any case, we show that environmental genome sequencing projects are likely to be a valuable resource when mining for genes resembling protistan PKS I genes.  相似文献   

16.
Fungal type I polyketide (PK) compounds are highly valuable for medical treatment and extremely diverse in structure, partly because of the enzymatic activities of reducing domains in polyketide synthases (PKSs). We have cloned several PKS genes from the fungus Xylaria sp. BCC 1067, which produces two polyketides: depudecin (reduced PK) and 19,20-epoxycytochalasin Q (PK-nonribosomal peptide (NRP) hybrid). Two new degenerate primer sets, KA-series and XKS, were designed to amplify reducing PKS and PKS-NRP synthetase hybrid genes, respectively. Five putative PKS genes were amplified in Xylaria using KA-series primers and two more with the XKS primers. All seven are predicted to encode proteins homologous to highly reduced (HR)-type PKSs. Previously designed primers in LC-, KS-, and MT-series identified four additional PKS gene fragments. Selected PKS fragments were used as probes to identify PKS genes from the genomic library of this fungus. Full-length sequences for five PKS genes were obtained: pks12, pks3, pksKA1, pksMT, and pksX1. They are structurally diverse with 1-9 putative introns and products ranging from 2162 to 3654 amino acids in length. The finding of 11 distinct PKS genes solely by means of PCR cloning supports that PKS genes are highly diverse in fungi. It also indicates that our KA-series primers can serve as powerful tools to reveal the genetic potential of fungi in production of multiple types of HR PKs, which the conventional compound screening could underestimate.  相似文献   

17.
Silakowski B  Kunze B  Müller R 《Gene》2001,275(2):233-240
Many bacterial and fungal secondary metabolites are produced by polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). Recently, it has been discovered that these modular enzymatic systems can also closely cooperate to form natural products. The analysis of the corresponding biosynthetic machineries, in the form of hybrid systems, is of special interest for combinatorial biosynthesis, because the combination of PKS and NRPS can lead to an immense variety of structures that might be produced. During our screening for hybrid PKS/NRPS systems from myxobacteria, we scanned the genome of Stigmatella aurantiaca DW4/3-1 for the presence of gene loci that encode both the PKS and NRPS genes. In addition to the previously characterized myxothiazol system, we identified three further hybrid loci, three additional PKS and one further NRPS gene locus. These were analyzed by hybridization, physical mapping, PCR with degenerate oligonucleotides and sequencing of fragments of the gene clusters. The function of these genes was not known but it had already been speculated that one compound produced by the strain and detected via HPLC was a secondary metabolite. This was based on the observation that its production is dependent on an active copy of the phosphopantetheinyl transferase gene mtaA. We show here that one of the identified hybrid gene loci is responsible for the formation of this secondary metabolite. In agreement with the genetic data, the chemical structure resembles a cyclic polypeptide with a PKS sidechain. Our data show that S. aurantiaca has a broader genetic capacity to produce natural products than the number of compounds isolated from the strain so far suggests.  相似文献   

18.
A 108-kb genomic DNA region of Saccharopolyspora spinosa NRRL 18395, producer of the agriculturally important insecticidal antibiotics spinosyns, has been cloned, sequenced and analyzed to reveal clustered genes encoding a type I polyketide synthase (PKS) complex. The genes for the PKS are flanked by genes encoding homologs of enzymes that are involved in the urea cycle, valine, leucine and isoleucine biosynthesis and energy metabolism. While the disruption of the PKS genes by insertional inactivation was not expected to abolish the production of spinosyns, no differences were found in the antibacterial, antifungal, or insecticidal activities either of the parental and the knockout mutant strains under the growth conditions tested. Deduction of the most likely structure of the polyketide core of the cryptic metabolite, termed obscurin, from the predicted modules and domains of the PKS suggests the formation of a highly unsaturated substituted C22 carboxylic acid that might undergo further processing after its release from the PKS.  相似文献   

19.
20.
The avermectin (Av) polyketide synthase (PKS) and erythromycin (Er) PKS are encoded by modular repeats of DNA, but the genetic organization of the modules encoding Av PKS is more complex than Er PKS. Sequencing of several related DNA fragments from Streptomyces avermitilis that are part of the Av biosynthetic gene cluster, revealed that they encode parts of large multifunctional PKS proteins. The Av PKS proteins show strong similarity to each other, as well as similarity to Er PKS proteins [Donadio et al., Science 252 (1991) 675-679] and fatty acid synthases. Partial DNA sequencing of the 65-kb region containing all the related sequence elements in the avr genes provides evidence for twelve modular repeats encoding FAS-like domains. The genes encoding the Av PKS are organized as two sets of six modular repeats which are convergently transcribed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号