首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression level of an ice nucleation gene (inaZ) was varied in Escherichia coli to observe the relationship between activity and gene product. The ice nucleation activity increased as the 2nd to 3rd power of the membrane concentration of the inaZ gene product, implying that molecules of InaZ protein interact cooperatively in groups of two to three at the rate-limiting step of ice nucleus assembly. The 2nd to 3rd power relationship was independent of the threshold temperature at which ice nucleation was measured and was consistent over a 500-fold range of protein concentration. Such a relationship indicates that the same rate-limiting step must be common to the formation of ice nuclei displaying all the various threshold temperatures within a bacterial population. Observations of Pseudomonas syringae, expressing the inaZ gene at various levels, were consistent with a similar relationship and hence a similar mechanism of ice nucleus assembly in Pseudomonas.  相似文献   

2.
Summary The ice nucleation gene inaZ, from Pseudomonas syringae S203, was manipulated to produce a series of defined rearrangements in its coding sequence without changing the reading frame. The effects of these mutations on the ice nucleation phenotype were determined in a heterologous host, Escherichia coli K12. Deletions which disrupted the periodicity of 16 codons, in a repetitive region of inaZ, caused the frequencies of ice nuclei in the bacterial population to be significantly depressed; the nuclei with thresholds at warmer temperatures were most affected. In contrast, when the periodicity was left intact, deletions and duplications in the same region had only slight effects on nucleation activity. Deletions removing part or all of one of the nonrepetitive regions (that encoding the amino-terminal domain of the InaZ protein) did not abolish nucleation activity, but caused it to be limited to cooler threshold temperatures. In contrast, the non-repetitive carboxy-terminal domain of the InaZ protein was shown to be essential for ice nucleation at all temperatures. The differential requirements (for periodicity, and for the amino-terminus) in forming nuclei with different thresholds may be significant for understanding what determines the threshold temperature of an ice nucleus.  相似文献   

3.
Expression of a bacterial ice nucleation gene in plants   总被引:3,自引:0,他引:3       下载免费PDF全文
We have introduced an ice nucleation gene (inaZ) from Pseudomonas syringae pv. syringae into Nicotiana tabacum, a freezing-sensitive species, and Solanum commersonii, a freezing-tolerant species. Transformants of both species showed increased ice nucleation activity over untransformed controls. The concentration of ice nuclei detected at −10.5°C in 15 different primary transformants of S. commersonii varied by over 1000-fold, and the most active transformant contained over 100 ice nuclei/mg of tissue. The temperature of the warmest freezing event in plant samples of small mass was increased from approximately −12°C in the untransformed controls to −4°C in inaZ-expressing transformants. The threshold nucleation temperature of samples from transformed plants did not increase appreciably with the mass of the sample. The most abundant protein detected in transgenic plants using immunological probes specific to the inaZ protein exhibited a higher mobility on sodium dodecyl sulfate polyacrylamide gels than the inaZ protein from bacterial sources. However, some protein with a similar mobility to the inaZ protein could be detected. Although the warmest ice nucleation temperature detected in transgenic plants is lower than that conferred by this gene in P. syringae (−2°C), our results demonstrate that the ice nucleation gene of P. syringae can be expressed in plant cells to produce functional ice nuclei.  相似文献   

4.
Bacterial ice nucleation: a factor in frost injury to plants   总被引:23,自引:4,他引:19       下载免费PDF全文
Lindow SE  Arny DC  Upper CD 《Plant physiology》1982,70(4):1084-1089
Heterogeneous ice nuclei are necessary, and the common epiphytic ice nucleation active (INA) bacteria Pseudomonas syringae van Hall and Erwinia herbicola (Löhnis) Dye are sufficient to incite frost injury to sensitive plants at −5°C. The ice nucleation activity of the bacteria occurs at the same temperatures at which frost injury to sensitive plants occurs in nature. Bacterial ice nucleation on leaves can be detected at about −2°C, whereas the leaves themselves, i.e. without INA bacteria, contain nuclei active only at much lower temperatures. The temperature at which injury to plants occurs is predictable on the basis of the ice nucleation activity of leaf discs, which in turn depends on the number and ice nucleation activity of their resident bacteria. Bacterial isolates which are able to incite injury to corn at −5°C are always active as ice nuclei at −5°C. INA bacteria incited frost injury to all of the species of sensitive plants tested.  相似文献   

5.
Wowk B  Fahy GM 《Cryobiology》2002,44(1):14-23
The simple linear polymer polyglycerol (PGL) was found to apparently bind and inhibit the ice nucleating activity of proteins from the ice nucleating bacterium Pseudomonas syringae. PGL of molecular mass 750 Da was added to a solution consisting of 1 ppm freeze-dried P. syringae 31A in water. Differential ice nucleator spectra were determined by measuring the distribution of freezing temperatures in a population of 98 drops of 1 microL volume. The mean freezing temperature was lowered from -6.8 degrees C (control) to -8.0,-9.4,-12.5, and -13.4 degrees C for 0.001, 0.01, 0.1, and 1% w/w PGL concentrations, respectively (SE < 0.2 degrees C). PGL was found to be an ineffective inhibitor of seven defined organic ice nucleating agents, whereas the general ice nucleation inhibitor polyvinyl alcohol (PVA) was found to be effective against five of the seven. The activity of PGL therefore seems to be specific against bacterial ice nucleating protein. PGL alone was an ineffective inhibitor of ice nucleation in small volumes of environmental or laboratory water samples, suggesting that the numerical majority of ice nucleating contaminants in nature may be of nonbacterial origin. However, PGL was more effective than PVA at suppressing initial ice nucleation events in large volumes, suggesting a ubiquitous sparse background of bacterial ice nucleating proteins with high nucleation efficiency. The combination of PGL and PVA was particularly effective for reducing ice formation in solutions used for cryopreservation by vitrification.  相似文献   

6.
Release of ice nuclei in the growth medium of recombinant Halomonas elongata cells expressing the inaZ gene of Pseudomonas syringae was studied in an attempt to produce cell-free active ice nuclei for biotechnological applications. Cell-free ice nuclei were not retained by cellulose acetate filters of 0.2 microm pore size. Highest activity of cell-free ice nuclei was obtained when cells were grown in low salinity (0.5-5% NaCl, w/v). Freezing temperature threshold, estimated to be below -7 degrees C indicating class C nuclei, was not affected by medium salinity. Their density, as estimated by Percoll density centrifugation, was 1.018 +/- 0.002 gml(-1) and they were found to be free of lipids. Ice nuclei are released in the growth medium of recombinant H. elongata cells probably because of inefficient anchoring of the ice-nucleation protein aggregates in the outer membrane. The ice+ recombinant H. elongata cells could be useful for future use as a source of active cell-free ice nucleation protein.  相似文献   

7.
Ice nucleation activity and the iceC gene product were quantified in different subcellular fractions of the Pseudomonas syringae source strain and in Escherichia coli containing the cloned iceC gene to determine the activity of this protein in different subcellular locations. Ice nuclei were nearly completely retained during isolation of cell envelopes but exhibited a decrease in the temperature at which they were expressed. Ice nucleation activity was found in Triton X-100 insoluble membrane fragments as well as in slowly sedimenting and high-density membrane fragments. Nearly all ice nucleation activity was associated with the outer membrane because the partitioning of 3-ketodeoxyoctonate (a lipopolysaccharide component) and ice nuclei in cell fractions were similar to and opposite that of NADH oxidase (a cytoplasmic membrane component). The iceC gene product had an apparent mass of 150,000 Da based on migration in SDS-polyacrylamide gels. This protein was not found in soluble cell components. Nearly all of the iceC gene product, which occurred in low abundance, was associated with the outer membrane of both P. syringae and E. coli. Therefore, the iceC gene product is located at and is maximally active in or on the outer membrane of cells of the source strain and heterologous strains.  相似文献   

8.
Components of ice nucleation structures of bacteria   总被引:7,自引:1,他引:6       下载免费PDF全文
Nonprotein components attached to the known protein product of the inaZ gene of Pseudomonas syringae have been identified and shown to be necessary for the most efficient ice nucleation of supercooled H2O. Previous studies have shown that cultures of Ina+ bacteria have cells with three major classes of ice-nucleating structures with readily differentiated activities. Further, some cells in the culture have nucleating activities intermediate between those of the different classes and presumably have structures that are biosynthetic intermediates between those of the different classes. Since these structures cannot be readily isolated and analyzed, their components have been identified by the use of specific enzymes or chemical probes, by direct incorporation of labeled precursors, and by stimulation of the formation of specific classes of freezing structures by selective additions to the growth medium. From these preliminary studies it appears that the most active ice nucleation structure (class A) contains the ice nucleation protein linked to phosphatidylinositol and mannose, probably as a complex mannan, and possibly glucosamine. These nonprotein components are characteristic of those used to anchor external proteins to cell membranes of eucaryotic cells and suggest that a similar but not identical anchoring mechanism is required for efficient ice nucleation structure. The class B structure has been found to contain protein presumably linked to the mannan and glucosamine moieties but definitely not to the phosphatidylinositol. The class C structure, which has the poorest ice nucleation activity, appears to be the ice nucleation protein linked to a few mannose residues and to be partially imbedded in the outer cell membrane.  相似文献   

9.
Cells of ice nucleation active bacterial species catalyse ice formation over the temperature range of -2 to -12°C. Current models of ice nucleus structure associate the size of ice nucleation protein aggregates with the temperature at which they catalyse ice formation. To better define the structural features of ice nucleation proteins responsible for the functional heterogeneity of ice nuclei within a genetically homogeneous collection of cells we used in vitro chemical mutagenesis to isolate mutants with reduced ability to nucleate ice at warm assay temperatures but which retain normal or near normal nucleation activity at cold temperatures (WIND, i.e. w arm i ce n ucleus-d eficient mutants). Nearly half of the mutants obtained after hydroxylamine mutagenesis of the iceE gene from Erwinia herbicola had this phenotype. The phenotypes and location of lesions on the genetic map of iceE were determined for a number of mutants. All WIND mutations were restricted to the portion of iceE encoding the repetitive region of the poty peptide. DNA sequencing of two WIND mutants revealed single nucleotide substitutions changing a conserved serine or glycine residue to phenylalanine and serine, respectively. The implications of these findings in structure/function models for the ice nucleation protein are discussed.  相似文献   

10.
A new system designed for cell surface display of recombinant proteins on Escherichia coli was evaluated for expression of eukaryotic viral antigens. The major surface antigen of hepatitis B virus (HBsAg) was fused to the ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, whole-cell ELISA, and ice nucleation activity assay confirmed expression of recombinant proteins on the surface of Escherichia coli. This study indicated that INP-based cell surface display can be used for epitope mapping and recombinant bacteria expressing hepatitis viral antigens may be used for developing live vaccines.  相似文献   

11.
Some ice-nucleating bacterial strains, including Pantoea ananatis (Erwinia uredovora), Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for the ability to shed ice nuclei into the growth medium. A novel ice-nucleating bacterium, Pseudomonas antarctica IN-74, was isolated from Ross Island, Antarctica. Cell-free ice nuclei from P. antarctica IN-74 were different from the conventional cell-free ice nuclei and showed a unique characterization. Cell-free ice nuclei were purified by centrifugation, filtration (0.45 microm), ultrafiltration, and gel filtration. In an ice-nucleating medium in 1 liter of cell culture, maximum growth was obtained with the production of 1.9 mg of cell-free ice nuclei. Ice nucleation activity in these cell-free ice nuclei preparations was extremely sensitive to pH. It was demonstrated that the components of cell-free ice nuclei were protein (33%), saccharide (12%), and lipid (55%), indicating that cell-free ice nuclei were lipoglycoproteins. Also, carbohydrate and lipid stains showed that cell-free ice nuclei contained both carbohydrate and lipid moieties.  相似文献   

12.
The frost sensitivity of Citrus sinensis in relation to the presence of biogenic ice nuclei was studied. In commercially managed citrus groves the ice nucleation active (INA) bacterium Pseudomonas syringae reached 6 × 104 colony forming units (CFU) leaf−1, a population sufficiently high to catalyze ice formation. However, a transient loss of bacterial nucleation activity was noticeable at subzero field temperatures, followed by resumption as temperatures rose. This loss was apparently due to a temporary transition of INA to ice nucleation inactive (INI) bacteria. Field application of Bordeaux mixture, copper hydroxide, streptomycin, and 2-hydroxypropylmethanethiolsulfonate (HPMTS), resulted in reduction of INA bacterial populations to detectability (≤ 102 CFU leaf−1) limits. However, the corresponding reduction in ice nucleation events in treated samples as compared to controls at nucleation temperature ≥−3°C was not as dramatic. It ranged from approximately 7% in samples treated with the bactericide HPMTS, to 35% in samples treated with chemicals possessing combined bactericidal - fungicidal action (coppers). Since a quantitative relationship exists between ice nucleation events on individual leaves and the INA bacterial populations harbored by these leaves, these results suggest the co-existence of a bacterial and a proteinaceous, yet non-bacterial ice nucleating source in citrus, both active at ≥−3°C.  相似文献   

13.
The paper deals with the study of the ice nucleation activity of the cells, extracellular lipopolysaccharides (ELPSs), lipopolysaccharides (LPSs), and their structural components (lipid A, core oligosaccharide, and O-specific polysaccharide) of Pseudomonas fluorescens, P. syringae, P.fragi, and P. pseudoalcaligenes. The aqueous suspensions of the intact cells of P. syringae IMV 1951 and IMV 185 began to freeze at -1 and -4 degrees C, respectively. This suggests that these cells possess ice nucleation activity. The aqueous cell suspensions of two other strains, P. fluorescens IMV 1433 and IMV 2125, began to freeze at lower temperatures than did distilled water (-9 degrees C), which suggests that the cells of these strains possess antifreeze activity. The ice nucleation activity of the bacterial strains studied did not show any correlation with their taxonomic status. The ice nucleation activity of ELPSs depended little on their concentration (within a concentration range of 0.2-0.4%). In most cases, the ice nucleation activity of ELPSs, LPSs, and their structural components differed from that of the intact cells from which these biopolymers were obtained. This may indicate that the biopolymers under study play a role in ice nucleation, but this role is not crucial. The relationship between the structure of LPSs and their effect on ice nucleation is discussed.  相似文献   

14.
The bacterial ice nucleation gene inaZ confers production of ice nuclei when transferred into transgenic plants. Conditioning of the transformed plant tissue at temperatures near 0°C greatly increased the ice nucleation activity in plants, and maximum ice nucleation activity was achieved only after low-temperature conditioning for about 48 h. Although the transgenic plants contain similar amounts of inaZ mRNA at both normal and low temperatures, low temperatures are required for accumulation of INAZ protein. We propose that the stability of the INAZ protein and thus ice nucleation activity in the transgenic plants is enhanced by low-temperature conditioning.  相似文献   

15.
Antibodies were raised against the InaW protein, the product of the ice nucleation gene of Pseudomonas fluorescens MS1650, after protein isolation from an Escherichia coli clone. On Western blots (immunoblots), these antibodies recognized InaW protein and InaZ protein (the ice nucleation gene product of Pseudomonas syringae S203), produced by both E. coli clones and the source organisms. The InaZ protein appeared in P. syringae S203 during stationary phase; its appearance was correlated with the appearance of the ice nucleation-active phenotype. In contrast, the InaW protein occurred at relatively constant levels throughout the growth phases of P. fluorescens MS1650; the ice nucleation activity was also constant. Western analyses of membrane preparations of P. syringae PS31 and Erwinia herbicola MS3000 with this antibody revealed proteins which were synthesized with development of the nucleating phenotype. In these species the presence or absence of the nucleating phenotype was controlled by manipulation of culture conditions. In all nucleation-positive cultures examined, cross-reacting low-molecular-weight bands were observed; these bands appeared to be products of proteolytic degradation of ice nucleation proteins. The proteolysis pattern of InaZ protein seen on Western blots showed a periodic pattern of fragment sizes, suggesting a highly repetitive site for protease action. A periodic primary structure is predicted by the DNA sequence of the inaZ gene.  相似文献   

16.
We generated a recombinant 96-residue polypeptide corresponding to a sequence Tyr176-Gly273 of ice nucleation protein from Pseudomonas syringae (denoted INP96). INP96 exhibited an ability to shape an ice crystal, whose morphology is highly similar to the hexagonal-bipyramid generally identified for antifreeze protein. INP96 also showed a non-linear, concentration-dependent retardation of ice growth. Additionally, circular dichroism and NMR measurements suggested a local structural construction in INP96, which undergoes irreversible thermal denaturation. These data imply that a part of INP constructs a unique structure so as to interact with the ice crystal surfaces.  相似文献   

17.
Cell surface display on Escherichia coli using ice nucleation protein was performed in order to develop a new expression system for recombinant eukaryotic proteins. Salmobin, the thrombin-like enzyme obtained from Korean snake (Agkistrodon halys) venom was displayed on the surface of Escherichia coli fused to the C-terminus of the ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. The thrombin cleavage site was inserted between salmobin and INP. The presence of salmobin on the bacterial cell surface was verified by SDS-PAGE, Western blotting, whole cell ELISA, and immunofluorescence microscopy. After thrombin cleavage the thrombin-like enzyme activity of recombinant salmobin was tested and verified. We concluded that INP-based cell surface display can be used as a novel expression system for eukaryotic proteins.  相似文献   

18.
Rates of assembly and degradation of bacterial ice nuclei   总被引:6,自引:0,他引:6  
The kinetics of ice-nucleus assembly from newly synthesized nucleation protein were observed following induction of nucleation gene expression in the heterologous host Escherichia coli. Assembly was significantly slower for the small proportion of ice nuclei active above -4.4 degrees C; this was consistent with the belief that these nuclei comprise the largest aggregates of nucleation protein. The kinetics of nucleus degradation were followed after inhibiting protein synthesis. Nucleation activity and protein showed a concerted decay, indicating that most of the functional ice nuclei are in equilibrium with a single cellular pool of nucleation protein. A minority of the ice nuclei decayed much more slowly than the majority; presumably their nucleation protein was distinct either by virtue of different structure or different subcellular compartmentalization, or because of its presence in a metabolically distinct subpopulation of cells.  相似文献   

19.
Ice nucleation temperatures of individual leaves were determined by a tube nucleation test. With this assay, a direct quantitative relationship was obtained between the temperatures at which ice nucleation occurred on individual oat (Avena sativa L.) leaves and the population sizes of ice nucleation active (INA) bacteria present on those leaves. In the absence of INA bacteria, nucleation of supercooled growth-chamber grown oat leaves did not occur until temperatures were below approximately −5°C. Both nucleation temperature and population size of INA bacteria were determined on the same individual, field-grown oat leaves. Leaves with higher ice nucleation temperatures harbored larger populations of INA bacteria than did leaves with lower nucleation temperatures. Log10 mean populations of INA bacteria per leaf were 5.14 and 3.51 for leaves with nucleation temperatures of −2.5°C and −3.0°C, respectively. Nucleation frequencies (the ratio of ice nuclei to viable cells) of INA bacteria on leaves were lognormally distributed. Strains from two very different collections of Pseudomonas syringae and one of Erwinia herbicola were cultured on nutrient glycerol agar and tested for nucleation frequency at −5°C. Nucleation frequencies of these bacterial strains were also lognormally distributed within each of the three sets. The tube nucleation test was used to determine the frequency with which individual leaves in an oat canopy harbored large populations of INA bacteria throughout the growing season. This test also predicted relative frost hazard to tomato (Lycopersicon esculentum Mill) plants.  相似文献   

20.
A new system for cell surface display of recombinant proteins on Escherichia coli was tested for expression of the ecto domain of CD8, which is the surface protein of human T cytotoxic lymphocytes. Immunofluorescence microscopy, ELISA, and immunodot blotting confirmed successful expression of the CD8 ecto domain fused to ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号