首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Previous studies from this laboratory have shown that synthesis of GT3, the precursor of c series gangliosides, occurs in proximal Golgi compartments, as has been shown for the synthesis of GM3 and GD3, the precursors of a and b series gangliosides, respectively. In this work we studied whether the synthesis of GM3, GD3, and GT3 occurs in the same or in different compartments of the proximal Golgi. For this, we examined in retina cells (a) the effect of monensin, a sodium ionophore that affects mostly the trans Golgi and the trans Golgi network function, on the metabolic labeling of glycolipids from [3H]Gal by cultured cells from 7- and 10-day chick embryos and (b) the labeling in vitro of endogenous glycolipids of Golgi membrane preparations from 7-day embryos incubated with UDP-[3H]Gal. In (a), 1 µM monensin produced a twofold accumulation of radioactive glucosylceramide and a decrease to ~50 and 20% of total ganglioside labeling in 7- and 10-day cells, respectively. At both ages, monensin produced a threefold accumulation of radioactive GM3 and an inhibition of >90% of GT3, GM1, GD1a, and GT1b synthesis. GD3 synthesis was inhibited ~30 and 70%, respectively, in 7- and 10-day cells. In (b), >80% of the [3H]Gal was incorporated into endogenous glucosylceramide to form radioactive lactosylceramide. About 90% of [3H]Gal-labeled lactosylceramide was converted into GM3, and most of this in turn into GD3 when unlabeled CMP-NeuAc was also present in the incubation system. Under the same conditions, however, <5% of labeled GD3 was converted into GT3. Golgi membranes incubated with CMP-[3H]NeuAc incorporated ~20% of [3H]NeuAc into endogenous GT3, and this percentage was not affected by 1 µM monensin. These results indicate that synthesis of GT3 is carried out in a compartment of the proximal Golgi different from those for lactosylceramide, GM3, and GD3 synthesis. Results from the experiments with monensin point to the cis/medial Golgi as the main compartment for coupled synthesis of lactosylceramide, GM3, and GD3 and to the trans Golgi as the main compartment for synthesis of GT3.  相似文献   

2.
Synthesis of ganglioside GD1b from ganglioside GD2 was demonstrated using Golgi membranes isolated from rat liver. Competition experiments using gangliosides GA2, GM2 and GD2 as substrates, and as mutual inhibitors for ganglioside galactosyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that galactosyl transfer to these three compounds, leading to gangliosides GA1, GM1a and GD1b respectively, is catalyzed by one enzyme. These results strengthen the hypothesis that the main site for the regulation of ganglioside biosynthesis occurs within the reaction sequence LacCer----GA3----GD3----GT3.  相似文献   

3.
In this study, age-related changes of GM1, GD1a, GT1b fractions of gangliosides were investigated in whole brain of male Wistar albino rats. Insignificant increases were detected in GM1 values from the third to the 24th month, whereas GD1a and GT1b concentrations of ganglioside in 24-month-old rats decreased significantly as compared to 6-month-old rats. Although there were no significant differences in the GD1a/GT1b ratio of any groups, GM1/GD1a and GM1/GT1b ratios were significantly increased as compared to 6-month-old rats. The increase in the ratios of gangliosides are not due to an increase of GM1 fractions; they result from a decrease of GD1a and GT1b fractions of gangliosides. In conclusion, the concentration of ganglioside decreased with ageing.  相似文献   

4.
We have synthesized several ganglio-oligosaccharide structures using glycosyltransferases from Campylobacter jejuni. The enzymes, alpha-(2-->3/8)-sialyltransferase (Cst-II), beta-(1-->4)-N-acetylgalactosaminyltransferase (CgtA), and beta-(1-->3)-galactosyltransferase (CgtB), were produced in large-scale fermentation from Escherichia coli and further characterized based on their acceptor specificities. 2-Azidoethyl-glycosides corresponding to the oligosaccharides of GD3 (alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-), GT3 (alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-), GM2 (beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-), GD2 (beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-), GT2 (beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->8)-alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-), and GM1 (beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-) were synthesized in high yields (gram-scale). In addition, a mammalian alpha-(2-->3)-sialyltransferase (ST3Gal I) was used to sialylate GM1 and generate GD1a (alpha-D-Neup5Ac-(2-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1-->4)-[alpha-D-Neup5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-Glcp-) oligosaccharide. We also cloned and expressed a rat UDP-N-acetylglucosamine-4'epimerase (GalNAcE) in E. coli AD202 cells for cost saving in situ conversion of less expensive UDP-GlcNAc to UDP-GalNAc.  相似文献   

5.
The inhibitory action of gangliosides GT1B, GD1A, GM3 and GM1 on cell proliferation and epidermal growth factor receptor (EGFR) phosphorylation was determined in the N-myc amplified human neuroblastoma cell line NBL-W. The IC50 of each ganglioside was estimated from concentration-response regressions generated by incubating NBL-W cells with incremental concentrations (5-1000 microm) of GT1B, GD1A, GM3 or GM1 for 4 days. Cell proliferation was quantitatively determined by a colourimetric assay using tetrazolium dye and spectrophotometric analysis, and EGFR phosphorylation by densitometry of Western blots. All gangliosides assayed, with the exception of GM1, inhibited NBL-W cell proliferation in a concentration-dependent manner. The IC50s for gangliosides GT1B [molecular weight (MW) 2129], GM3 (MW 1236), and GD1A (MW 1838) were (mean +/- SEM) 117 +/- 26, 255 +/- 29, and 425 +/- 44 m, respectively. In contrast, the IC50 for GM1 (MW 1547) could not be determined. Incubation of NBL-W cells with epidermal growth factor (EGF) concentrations ranging from 0.1 to 1000 ng/ml progressively increased cell proliferation rate, but it plateaued at concentrations above 10 ng/ml. EGFR tyrosine phosphorylation, however, was incrementally stimulated by EGF concentrations from 1 to 100 ng/ml. The suppression of EGF-induced EGFR phosphorylation differed for each ganglioside, and their respective inhibitory potencies were as follows: EGFR phosphorylation [area under curve (+ EGF)/area under curve (- EGF)]: control (no ganglioside added) = 8.2; GM1 = 8.3; GD1A = 6.7; GM3 = 4.87, and GT1B = 4.09. The lower the ratio, the greater the inhibitory activity of the ganglioside. Gangliosides GD1A and GT1B, which have terminal N-acetyl neuraminic acid moieties, as well as one and two N-acetyl neuraminic acid residues linked to the internal galactose, respectively, both inhibited cell proliferation and EGFR phosphorylation. However, GD1A was a more potent suppressor of cell proliferation and GT1B most effective against EGFR phosphorylation. GM3, which only has a terminal N-acetyl neuraminic acid, inhibited cell proliferation and EGFR phosphorylation almost equivalently. These data suggest that gangliosides differ in their potency as inhibitors of NBL-W neuroblastoma cell proliferation and EGFR tyrosine phosphorylation, and that perturbations in the differential expression of membrane glycosphingolipids may play a role in modulating neuroblastoma growth.  相似文献   

6.
A series of GM2 analogs in which GM2 epitope was coupled to a variety of glycosyl lipids were designed and synthesized to investigate the mechanism of enzymatic hydrolysis of GM2 ganglioside. The coupling of N-Troc-protected sialic acid and p-methoxyphenyl galactoside acceptor gave the crystalline disaccharide, which was further coupled with galactosamine donor to give the desired GM2 epitope trisaccharide. After conversion into the corresponding glycosyl donor, the trisaccharide was coupled with galactose, glucose and artificial ceramide (B30) to give the final compounds. The result on hydrolysis of GM2 analogs indicates that GM2 activator protein requires one spacer sugar between GM2 epitope and the lipid moiety to assist the hydrolysis of the terminal GalNAc residue. Synthetic studies on sialoglycoconjugates, Part 140. For part 139, see Ref [1].  相似文献   

7.
Abstract— The ganglioside composition of the brain of a patient with Tay-Sachs disease (TS-brain) was determined by a newly developed ganglioside-mapping procedure and compared with that of an age-matched control brain. GM2 ganglioside was the predominant component in TS-brain and the following gangliosides were also found, GM1, GD1a, GD1b and GT1 (major gangliosides in normal brain), and GM3, GD3, GD2 and GD1a-GAN (minor or undetectable components of normal brain). Individual gangliosides were isolated by column chromatography using a combination of DEAE-Sepharose, Iatrobeads and Silica Gel 60 and their structures were confirmed by comparing them with authentic standards using TLC, analysing their carbohydrate compositions by gas-liquid chromatography and cleaving them sequentially with glycosidases. The amounts of individual components were measured by quantitative densitometric scanning of the thin-layer plates. As a reflection of myelin breakdown, no sialosylgalactosyl ceramide was detectable in TS-brain. Although the total amounts of all gangliosides except GM2 in TS-brain were low, there were normal molar ratios of the main gangliosides in normal brain, that is, GM1, GD1a, GD1b and GT1. In comparison with the amount of GDla ganglioside, the amounts of GM2, GD2 and GD1a-GAN, which contain N-acetylgalactosamine as a terminal carbohydrate residue, were all elevated in TS-brain. The long chain bases of individual gangliosides contained both C-18 and C-20 sphingosine in different ratios and the ratio of C-20 to C-18 increased in the gangliosides in the order: GM2 < GM1 < GD1a < GD1a-GAN < GD1b < GT1 in both normal brain and TS-brain. In contrast, GD2 and GD3 gangliosides consisted mainly of C-18 sphingosine. The C-20 to C-18 ratios of individual gangliosides in the TS-brain were lower than those of age-matched control brain. Hexosaminidase from Turbo cornutus showed the same specific activity and Km value in catalysing the cleavage of terminal N-acetylgalactosaminyl residues from GM2, GD2 and GD1a-GAN, suggesting that the brain gangliosides that increase in Tay-Sachs disease may be cleaved by the same enzyme.  相似文献   

8.
The relationship among lactosylceramide-(LacCer), GD3- and GM2-synthases and between the two last transferases and their common GM3 acceptor was investigated in intact Golgi membrane from chick embryo neural retina cells at early (8-days) and late (14 days) stages of the embryonic development. [3H]Gal was incorporated into endogenous glucosylceramide by incubation of Golgi membranes with UDP-[3H]Gal. Conversion of the synthesized [3H]Gal-LacCer into GM3, and of the latter into GD3, GM2 and GD2 was examined after a second incubation step with unlabeled CMP-NeuAc and/or UDP-GalNAc. With CMP-NeuAc, most [3H]Gal-LacCer was converted into GM3 in either 8- or 14- day membranes. However, while about 90% of GM3 was converted into GD3 in 8-day membranes, only about 25% followed this route in 14-day membranes. With CMP-NeuAc and UDP-GalNAc, about 90% of GM3 was used for synthesis of GM2 in 14-day membranes, while in 8-day membranes about 80% followed the route to GD3, and a part to GD2. Performing the second incubation step in the presence of increasing detergent concentrations showed that conversion of GM3 to GM2 was inhibited at concentrations lower than those required for inhibition of LacCer to GM3 conversion. Taken together, results indicate that transfer steps leading to synthesis of GM3, GD3, GM2 and GD2 from LacCer are functionally coupled in the Golgi membranes, and that GD3- and GM2-synthases compete in a common compartment for using a fraction of GM3 as substrate. In this competition, the relative activities of the transferases and their relative saturation with the respective donor sugar nucleotides, are important factors influencing conversion of GM3 toward either GD3 or GM2.  相似文献   

9.
Using a sucrose density gradient fractionation of a highly purified Golgi apparatus from rat liver, we determined the sub-Golgi distribution of CMP-NeuAc:GM3 ganglioside alpha 2----8sialyltransferase (GM3-SAT) and CMP-NeuAc:GT1b ganglioside alpha 2----8sialyltransferase (GT1b-SAT), in comparison with that of the other glycosyltransferase activities involved in ganglioside biosynthesis. While GM3-SAT was recovered in several density fractions, GT1b-SAT was mainly found on less dense sub-Golgi membranes; this indicates that these two activities are physically separate. Moreover, with regard to the monosialo pathway, CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase, UDP-GalNAc:GM3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GM2 ganglioside beta 1----3galactosyltransferase, and CMP-NeuAc:GM1 ganglioside alpha 2----3sialyltransferase were resolved from more dense to less dense fractions, respectively. In the disialo pathway, UDP-GalNAc:GD3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GD2 ganglioside beta 1----3galactosyltransferase and CMP-NeuAc:GD1b ganglioside alpha 2----3sialyltransferase co-distributed with the corresponding activities of the monosialo pathway. These last results indicate that many Golgi glycosyltransferases involved in ganglioside biosynthesis are localized in the order in which they act.  相似文献   

10.
The effect of end-product gangliosides (GD1a, GT1b, GQ1b) on the activities of two key enzymes in ganglioside biosynthesis, namely GM2-synthase and GD3-synthase in rat liver Golgi apparatus, has been investigated in detergent-free as well as in detergent-containing assays. In detergent-free intact Golgi vesicles, phosphatidylglycerol was used as a stimulant. This phospholipid was earlier shown to stimulate the activity of GM2-synthase without disrupting the vesicular intactness; it has, however, no effect on GD3-synthase (Yusuf, H.K.M., Pohlentz, G., Schwarzmann, G. & Sandhoff, K. (1983) Eur. J. Biochem. 134, 47-54). In the presence of this stimulant, all higher gangliosides inhibited the activity of GM2-synthase, the inhibition being more profound with increasing negative charge of the inhibiting gangliosides. These inhibitions are unspecific, but they do not exclude an end-product regulation of ganglioside biosynthesis. In detergent-solubilized Golgi membranes, on the other hand, the inhibition pattern was completely different. Here, ganglioside GD1a was the strongest inhibitor of GM2-synthase, followed by GM1 and GM2, but GT1b also inhibited this enzyme appreciably, in fact more strongly than GM1 or GM2. On the other hand, GQ1b had no effect at all. Conversely, GD3-synthase activity was most strongly inhibited by GQ1b, followed by GT1b, but GD1a also inhibited this enzyme almost as strongly as GT1b. These latter findings indicate that feed-back control of the a- and the b-series pathways of ganglioside biosynthesis is probably not specific, but the pathways appear to be inhibited more preferably by their respective end-products than by any other gangliosides of the same of the other series.  相似文献   

11.
Abstract: To characterize the sialyltransferase-IV activity in brain tissues, the activities of GM1b-, GD1a-, GT1b-, and GQ1c-synthases in adult cichlid fish and rat brains were examined using GA1, GM1, GD1b, or a cod brain ganglioside mixture as the substrate. The GD1a-synthase activity in the total membrane fraction from cichlid fish brain required divalent cations such as Mg2+ or Mn2+ and Triton CF-54 for its full activity. The Vmax value was 1,340 pmol/mg of protein/h at an optimal pH of 6.5, whereas the apparent Km values for CMP-sialic acid and GM1 were 172 and 78 µM, respectively. Cichlid fish and rat brains also contained GM1b-, GT1b-, and GQ1c-synthase activities. The ratio of GM1b-, GD1a-, and GT1b-synthase activities in fish brain was 1.00:0.89:1.13, respectively, and in rat brain 1.00:0.60:0.63. Incubation of fish brain membranes with a cod brain ganglioside mixture, which contains GT1c, and [3H]CMP-sialic acid produced radiolabeled GQ1c. It is interesting that the adult rat brain also contains an appreciable level of GQ1c-synthase activity despite its very low concentrations of c-series gangliosides. The GD1a- or GQ1c-synthase activity in fish and rat brain was inhibited specifically by coincubation with the glycolipids that serve as the substrates for other sialyltransferase-IV reactions. Thus, the GD1a-synthase activity was inhibited by GA1 and GD1b, but not by LacCer, GM3, or GD3. In a similar manner, the synthesis of GQ1c was suppressed by GA1, GM1, and GD1b, but not by LacCer, GM3, or GD3. The GD1a-synthase activity directed toward endogenous GM1 was inhibited by GA1 or GT1b, whereas the endogenous GT1b-synthase activity was suppressed by GA1 or GM1. GA1, GM1, and GD1b did not affect the endogenous GM3- and GD3-synthase activities. These results clearly demonstrate that sialyltransferase-IV in brain tissues catalyzes the reaction for GQ1c synthesis in the c-pathway as well as the corresponding steps in the asialo-, a-, and b-pathway in ganglioside biosynthesis.  相似文献   

12.
Eleven monoclonal antibodies to GM1 ganglioside were prepared from hybridoma clones obtained by fusion of spleen cells from mice immunized with GM1 with mouse myeloma cells. When the reactivities of these 11 monoclonal antibodies were determined by enzyme-linked immunosorbent assay with six glycosphingolipids (GM1, GD1a, GD1b, GT1b, GM2, and asialo-GM1), they showed different degrees of specificity. From their reactivity patterns, they could be divided into three groups: Group 1, those that react only with GM1 (C3 and D3); Group 2, those that react predominantly with GM1 (C6, B6, D1, e1, g1, g9, and e12); and Group 3, those that show poor discrimination (h2 and A4). The clones differed in their biological activities.  相似文献   

13.
Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function.  相似文献   

14.
Retinal abnormalities are well documented in patients with ganglioside storage diseases. The total content and distribution of retinal glycosphingolipids was studied for the first time in control mice and in Sandhoff disease (SD) and GM1 gangliosidosis mice. Light and electron microscopy of the SD and the GM1 retinas revealed storage in ganglion cells. Similar to previous findings in rat retina, GD3 was the major ganglioside in mouse retina, while GM2 and GM1 were minor species. Total ganglioside content was 44% and 40% higher in the SD and the GM1 retinas, respectively, than in the control retinas. Furthermore, GM2 and GM1 content were 11-fold and 51-fold higher in the SD and the GM1 retinas than in the control retinas, respectively. High concentrations of asialo-GM2 and asialo-GM1 were found in the SD and the GM1 retinas, respectively, but were undetectable in the control retinas. The GSL abnormalities in the SD and the GM1 retinas reflect significant reductions in beta-hexosaminidase and beta-galactosidase enzyme activities, respectively. Although electroretinograms appeared normal in the SD and the GM1 mice, visual evoked potentials were subnormal in both mutants, indicating visual impairments. Our findings present a model system for assessing retinal pathobiology and therapies for the gangliosidoses.  相似文献   

15.
The demonstration of a precursor-product relationship in the course of GM1 and GD1a biosynthesis is described in the present paper. We injected rats with GM2 gangliosides [GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1'Cer] of brain origin, which were isotopically radiolabeled on the GalNAc ([GalNAc-3H]GM2) or sphingosine ([Sph-3H]GM2) residue. We then compared the time-courses of GM1 and GD1a biosynthesis in the liver after the administration of each radiolabeled GM2 derivative. After the administration of [GalNAc-3H]GM2, GM1, and GD1a were both present as doublets, that could be easily resolved on TLC. The lower spot of each doublet was identified as a species having the typical rat brain ceramide moiety and represented gangliosides formed through direct glycosylation of the injected GM2. The upper spot of each doublet was identified as a species having the typical rat liver ceramide moiety and represented gangliosides formed through recycling of the [3H]GalNAc residue, released during ganglioside catabolism. After the administration of [Sph-3H]GM2, only ganglioside with the rat brain ceramide moiety were found, that represented the sum of ganglioside formed through direct glycosylation and those formed through recycling of some sphingosine-containing fragments. In each case, the time-course of GM1 and GD1a biosynthesis exhibited a precursor-product relationship. The curve obtained from the direct glycosylation showed a timing delay with respect to those obtained from recycling of GM2 fragments. These results are consistent with the hypothesis that the sequential addition of activated sugars to a sphingolipid precursor is a dissociative process, catalyzed by physically independent enzymatic activities.  相似文献   

16.

Objective

Molecular mimicry between Campylobacter jejuni lipo-oligosaccharides (LOSs) and human gangliosides GM1 and GD1a induces the production of anti-GM1 and anti-GD1a antibodies, and the development of Guillain-Barré syndrome. Complexes of two different gangliosides form new molecular shapes capable of enhancing recognition by anti-ganglioside antibodies. To test the hypothesis that the complex of GM1-like and GD1a-like LOSs of C. jejuni induces the development of anti-GM1b antibodies in Guillain-Barré syndrome patients.

Methods

Mass spectrometry analysis determined the LOS outer core structures, with which mice were immunized. IgG antibodies to single gangliosides and complex of gangliosides were tested in sera from Guillain-Barré syndrome patients from whom C. jejuni LOS had been isolated.

Results

Two isolates from GBS patients who had anti-GM1b antibodies, but neither anti-GM1 nor -GD1a antibodies, expressed both GM1-like and GD1a-like LOSs, but not GM1b-like LOS. Anti-GM1b antibodies were induced in one of the mice immunized with the C. jejuni bearing GM1-like and GD1a-like LOS. Sera from 20 patients had antibodies to the complex of GM1 and GD1a, all of which carried anti-GM1b reactivity. Five of these sera harbored neither anti-GM1 nor anti-GD1a antibodies. IgG antibodies to the complex were absorbed by GM1b, but by neither GM1 nor GD1a.

Conclusions

GM1-like and GD1a-like LOSs form a GM1b epitope, inducing the development of anti-GM1b antibodies in patients with Guillain-Barré syndrome subsequent to C. jejuni enteritis. Here, we present a new paradigm that the complex of two different structures forms a new molecular mimicry, inducing the production of autoantibodies.  相似文献   

17.
It is known that gangliosides, being ubiquitous membrane components, play important roles in cell-cell recognition, differentiation and transmembrane signalling. GM3, GM1 and GD1a were detected in the rat oviduct as major gangliosides by thin-layer chromatography (TLC) analysis. The total amounts of gangliosides from the oviducts at various times after hormone injection were not much changed. In order to identify their distribution and possible changes during ovulation, frozen sections of the rat oviducts were stained with specific monoclonal antibodies (MAbs) against the ganglio-series gangliosides. GM3 and GM1 were expressed in a different manner, but GD1a and other gangliosides were not immunohistochemically detected. In the ampullar region, GM3 was expressed in all the stroma and epithelial cells, but not GM1. GM1 was also not observed in epithelial cells. Staining by anti-GM1 monoclonal antibodies revealed long and minute thread-like structures in some of the stroma cells, whereas anti-GM3 monoclonal antibodies stained the entire cytoplasm, but not the nucleus, of all the stroma and epithelial cells. Other ganglio-series gangliosides, including GD1a, were not detected to some extent in the ampullar region by immunohistochemistry. Thus, these data suggest that GM3 and GM1 are oviduct-specific gangliosides.  相似文献   

18.
Recombinant human cytosolic sialidase (HsNEU2), expressed in Escherichia coli, was purified to homogeneity, and its substrate specificity was studied. HsNEU2 hydrolyzed 4-methylumbelliferyl alpha-NeuAc, alpha 2-->3 sialyllactose, glycoproteins (fetuin, alpha-acid glycoprotein, transferrin, and bovine submaxillary gland mucin), micellar gangliosides GD1a, GD1b, GT1b, and alpha 2-->3 paragloboside, and vesicular GM3. alpha 2-->6 sialyllactose, colominic acid, GM1 oligosaccharide, whereas micellar GM2 and GM1 were resistant. The optimal pH was 5.6, kinetics Michaelis-Menten type, V(max) varying from 250 IU/mg protein (GD1a) to 0.7 IU/mg protein (alpha(1)-acid glycoprotein), and K(m) in the millimolar range. HsNEU2 was activated by detergents (Triton X-100) only with gangliosidic substrates; the change of GM3 from vesicular to mixed micellar aggregation led to a 8.5-fold V(max) increase. HsNEU2 acted on gangliosides (GD1a, GM1, and GM2) at nanomolar concentrations. With these dispersions (studied in detailed on GM1), where monomers are bound to the tube wall or dilutedly associated (1:2000, mol/mol) to Triton X-100 micelles, the V(max) values were 25 and 72 microIU/mg protein, and K(m) was 10 and 15 x 10(-9) m, respectively. Remarkably, GM1 and GM2 were recognized only as monomers. HsNEU2 worked at pH 7.0 with an efficiency (compared with that at pH 5.6) ranging from 4% (on GD1a) to 64% (on alpha(1)-acid glycoprotein), from 7% (on GD1a) to 45% (on GM3) in the presence of Triton X-100, and from 30 to 40% on GM1 monomeric dispersion. These results show that HsNEU2 differentially recognizes the type of sialosyl linkage, the aglycone part of the substrate, and the supramolecular organization (monomer/micelle/vesicle) of gangliosides. The last ability might be relevant in sialidase interactions with gangliosides under physiological conditions.  相似文献   

19.
Gangliosides, sialic acid-bearing glycosphingolipids, are highly enriched in the vertebrate nervous system. Anti-ganglioside antibodies are associated with various human neuropathies, although the pathogenicity of these antibodies remains unproven. Testing the pathogenic role of anti-ganglioside antibodies will be facilitated by developing high-affinity IgG-class complement-fixing monoclonal anti-bodies against major brain gangliosides, a goal that has been difficult to achieve. In this study, mice lacking complex gangliosides were used as immune-naive hosts to raise anti-ganglioside antibodies. Wild-type mice and knockout mice with a disrupted gene for GM2/GD2 synthase (UDP-N-acetyl-D-galactosamine : GM3/GD3 N-acetyl-D-glactosaminyltransferase) were immunized with GD1a conjugated to keyhole limpet hemocyanin. The knockout mice produced a vigorous anti-GD1a IgG response, whereas wildtype littermates failed to do so. Fusion of spleen cells from an immunized knockout mouse with myeloma cells yielded numerous IgG anti-GD1a antibody-producing colonies. Ganglioside binding studies revealed two specificity classes; one colony representing each class was cloned and characterized. High-affinity monoclonal antibody was produced by each hybridoma : an IgG1 that bound nearly exclusively to GD1a and an IgG2b that bound GD1a, GT1b, and GT1aalpha. Both antibodies readily readily detected gangliosides via ELISA, TLC immune overlay, immunohistochemistry, and immunocytochemistry. In contrast to prior reports using anti-GD1a and anti-GT1b IgM class monoclonal antibodies, the new antibodies bound avidly to granule neurons in brain tissue sections and cell cultures. Mice lacking complex gangliosides are improved hosts for raising high-affinity, high-titer anti-ganglioside IgG antibodies for probing for the distribution and physiology of gangliosides and the pathophysiology of anti-ganglioside antibodies.  相似文献   

20.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号