首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specimens of the fruit beetle Pachnoda sinuata were starved for up to 30 days. The weight of the beetles declined consistently throughout the starvation period. Concentrations of carbohydrates and alanine in flight muscles, fat body and haemolymph decreased rapidly after onset of starvation, while the concentration of proline remained high. Whereas the lipid concentrations in the haemolymph did not change significantly upon starvation, the lipid content in flight muscles and fat body decreased significantly.Beetles that had been starved for 14 days responded to injection of Mem-CC, the endogenous neuropeptide from its corpora cardiaca, with hyperprolinaemia and a decrease in the alanine level, but no such effect was monitored after prolonged starvation of 28 days. Regardless of the period of starvation, Mem-CC injection could not cause hypertrehalosaemia or hyperlipaemia, although carbohydrates were increased in fed beetles after injection.Flight ability of beetles that had been starved for 15 or 30 days was apparently not impaired. During such periods, beetles used proline exclusively as fuel for flight as evidenced by the increase in the level of alanine in the haemolymph and decrease of the level of proline; the concentrations of carbohydrates and lipids remained unchanged.Activities of malic enzyme and alanine aminotransferase (enzymes involved in transamination in proline metabolism), glyceraldehyde-3-phosphate dehydrogenase (enzyme of glycolysis), 3-hydroxyacyl-CoA dehydrogenase (enzyme of beta-oxidation of fatty acids) and of malate dehydrogenase (enzyme of Krebs cycle) were measured in fat body and flight muscles. In flight muscle tissue the maximum activity of NAD(+)-dependent malic enzyme increased, while that of glyceraldehyde-3-phosphate dehydrogenase decreased during starvation, and malate dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and alanine aminotransferase were unchanged. In fat body tissue, activities of NADP(+)-dependent malic enzyme and 3-hydroxyacyl-CoA dehydrogenase increased during food deprivation and activities of glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase and alanine aminotransferase remained unchanged.  相似文献   

2.
Cellular and enzymatic changes in porcine adipose tissue during growth   总被引:6,自引:0,他引:6  
Experiments were designed to define some of the cellular and metabolic changes in various areas of porcine adipose tissue during growth and to establish a relationship between these changes and the accumulation of fat in the domestic pig. 35 male castrate pigs were killed at various ages from late fetal to 6.5 months. The following determinations were made on each animal: (1) total carcass fat, (2) adipose cell size and number by fixation of adipose tissue with osmium tetroxide, and (3) the activities of acetyl CoA carboxylase, citrate cleavage enzyme, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme from perirenal adipose tissue and each of the three layers of subcutaneous backfat. Carcass adipose tissue expanded by a combination of adipocyte hyperplasia and hypertrophy up to 5 months, after which adipose expansion was accomplished by cellular hypertrophy only, with no significant increase in cell number. The activities of the selected lipogenic enzymes (expressed on an adipose cell basis) increased markedly at weaning and again during the rapid increase in percentage of body fat between 3.5 and 5 months. Enzyme activities reached a peak at 5 months, after which activities decreased to values approaching mature levels.  相似文献   

3.
The proportion of pyruvate dehydrogenase complex in the active, dephosphorylated form was decreased (compared with lean controls) in heart muscle in gold thioglucose-treated obese hyperinsulinaemic mice, and the extent of enzyme inactivation was significantly linearly correlated with both body weight and body fat content. A single oral dose (25 mg/kg body wt.) of the beta-oxidation inhibitor 2-tetradecylglycidic acid to obese animals restored pyruvate dehydrogenase complex activity to that of lean controls. It is suggested that increased fatty acid oxidation may be a major factor in mediating the phosphorylation and inactivation of pyruvate dehydrogenase complex in mouse heart muscle in obesity, and this may represent an important mechanism in the development and/or expression of insulin resistance in respect of abnormalities of cellular glucose homoeostasis in these animals.  相似文献   

4.
Protease activities in the haemolymph and fat body in a bloodsucking insect, Rhodnius prolixus, infected with Trypanosoma rangeli, were investigated. After SDS-polyacrylamide gel electrophoresis containing gelatin as substrate, analysis of zymograms performed on samples of different tissues of controls and insects inoculated or orally infected with short or long epimastigotes of T. rangeli, demonstrated distinct patterns of protease activities: (i) proteases were detected in the haemolymph of insects which were fed on, or inoculated with, short epimastigotes of T. rangeli (39 kDa and 33 kDa, respectively), but they were not observed in the fat body taken from these insects; (ii) protease was also presented in the fat bodies derived from naive insects or controls inoculated with sterile phosphate-saline buffer (49 kDa), but it was not detected in the haemolymph of these insects; (iii) no protease activity was observed in both haemolymph and fat bodies taken from insects inoculated with, or fed on, long epimastigotes of T. rangeli. Furthermore, in short epimastigotes of T. rangeli extracts, three bands of the protease activities with apparent molecular weights of 297, 198 and 95 kDa were detected while long epimastigotes preparation presented only two bands of protease activities with molecular weights of 297 and 198 kDa. The proteases from the insect infected with T. rangeli and controls belong to the class of either metalloproteases or metal-activated enzymes since they are inhibited by 1,10-phenanthroline. The significance of these proteases in the insects infected with short epimastigotes of T. rangeli is discussed in relation to the success of the establishment of infection of these parasites in its vector, R. prolixus.  相似文献   

5.
Glucokinase and NADP:malate dehydrogenase (malic enzyme) first appear in liver when rat pups are weaned from milk which is high in fat to lab chow which is high in carbohydrate. To examine the influence of diet during the early neonatal period, before developmental changes in the circulating concentrations of thyroid and adrenocortical hormones occur, high-carbohydrate formula (56% of calories from carbohydrate), isocaloric and isonitrogenous with rat milk, was intermittently infused via gastrostomy starting on the second day of life. Pups had no further access to their dams. Body weights attained by these pups were at least 90% of those attained by mother-fed pups, which served as controls. In artificially reared rats fed the high-carbohydrate formula, on Day 4, glucokinase and malic enzyme were 30 and 18% of adult activity, respectively; on Day 10, glucokinase and malic enzyme were 71 and 96% of adult activity, respectively. On Days 4 and 10 glucose-6-phosphate dehydrogenase was elevated four- to fivefold in pups fed the high-carbohydrate formula compared to mother-fed pups. A second isocaloric formula, with 22% of calories from carbohydrate but low in protein, resulted in intermediate levels of all three enzymes on Day 10. Pups fed the high-carbohydrate formula has plasma insulin concentrations four- to fivefold greater than mother-fed pups on both Days 4 and 10. Triiodothyronine administration (1 microgram/g body wt) on Day 1 enhanced the induction of malic enzyme but not glucokinase on Day 4 in pups fed the high-carbohydrate formula. The results demonstrate that neonatal rat liver is competent to respond to high carbohydrate intake by induction of glucokinase and malic enzyme.  相似文献   

6.
Acute renal failure was induced in male rats by the subcutaneous injectioon of 4 mg HgC12 per kg body weight. Enzyme activities of the proximal tubule were studied histochemically at six time intervals from 15 min to 24 h. The enzyme studied were alkaline phosphatase, 5'-nucleotidase, acid phosphatase, alpha-glycerophosphate dehydrogenase (NAD-independent), malic dehydrogenase, succinic dehydrogenase, latic dehydrogenase, glucose-6-phosphate dehydrogenase and glucose-6-phosphatase. Decreases in activity were observed for alkaline phosphatase and 5'-nucleotidase after 15 min. Acid phosphatase was decreased after 30 min. These three enzymes returned to control levels after 3 h, but malic dehydrogenase and alpha-glycerophosphate dehydrogenase were decreased at this time interval. Succinic dehydrogenase was first decreased after 6 h. The earliest morphological changes detectable by light microscopy were observed in pars recta tubules in the medullary rays after 6 h, a time when all enzymes studied showed widespread decreased activity throughout the proximal tubule. After 24 h, the pars convoluta appeared morphologically normal but the pars recta was necrotic and exhibited calcification, whereas enzyme activity was decreased (absent in some cases) in both pars convoluta and pars recta. These results support the hypothesis that Hg++, when given in a sublethal dose, is associated with early histochemical changes in the brush border of the proximal tubule, which may be related to early changes in sodium reabsorption and to the subsequent development of acute renal failure. The observation that changes in plasma membrane-associated enzymes occur early and prior to alterations in enzymes of mitochondria and the endoplasmic reticulum suggests that Hg++ interacts initially with the plasma membrane.  相似文献   

7.
Developing embryos of the lake chubsucker, Erimyzon sucetta, were analyzed with regard to both gross morphological changes and specific enzymatic changes from the unfertilized egg stage until some 3 weeks posthatching. Total activities of three enzymes—lactate dehydrogenase, glucose-6-phosphate dehydrogenase, and isocitrate dehydrogenase—were determined throughout the course of development. Each of these different enzymes exhibited a different pattern of change during ontogeny. Electrophoretic analysis of qualitative changes in isozyme patterns was accomplished for these three enzymes and for α-amylase, glucosephosphate isomerase, mannosephosphate isomerase, creatine kinase, esterase, glutamate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, malate dehydrogenase, hexose diphosphatase, phosphoglucomutase, and phosphogluconate dehydrogenase. Many of the enzyme systems investigated exhibited rich patterns of ontogenetic change, while a few remained relatively unchanged throughout the interval studied. Several of the enzymes in particular metabolic pathways exhibited coincident changes suggestive of coordinate control. The appearance of several rather “tissue-specific” isozymes was closely correlated with the morphological and functional differentiation of these particular tissues or organs.  相似文献   

8.
The effect of obesity on the activity of some enzymes of energy supplying metabolism was studied in male and female groups of different body weight, using tissue samples of m. quadriceps femoris obtained by a biopsy needle. Both obese males and females displayed a distinct tendency towards anaerobic metabolism (high lactate dehydrogenase activities). The assumption that cytoplasm has an increased capacity in the muscle of the obese for reduction syntheses is supported by the increased ratio of malate dehydrogenase to citrate synthase activities. Compared with controls, less activity of enzymes associated with fatty acid and glucose degradation (hexokinase, hydroxyacyl-CoA dehydrogenase, citrate synthase) was observed in obese males. In obese females the latter enzyme activities did not differ from those in the controls; however, lactate dehydrogenase and triosophosphate dehydrogenase activities were significantly higher. Significant inverse correlations between hexokinase and hydroxyacyl- CoA dehydrogenase activities, on the one hand, and indicators of body composition and body weight, on the other, were found in males. The female group did not display analogous significant relations between the enzymatic organization and indicators of body composition.  相似文献   

9.
A quantitative histochemical method (Trident) has been adapted to measure the activities of 4 enzymes, succinate dehydrogenase (SD), isocitrate dehydrogenase (ICD), glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6-PGD), within the liver acini of the rat during the postnatal developmental period. Quantitative changes of these enzymes in livers of rats of 25 g and 50 g body weight were studied, with particular emphasis on the activity-rest cycle. The results indicate a time-dependent heterogeneous distribution of enzymes along the acinar zones and the pattern of localization is age-dependent. When the mean enzyme activity from each group in relation to the time of the day are compared, a mirror image of each other could be seen. In general, a high enzyme activity has been observed during the resting phase in 25-g rats and low in 50-g rats. During the developmental period, the mean ICD activity is diminished, whereas G6PD and 6-PGD are augmented, and SD activity remains unchanged.  相似文献   

10.
Changes in the activity of some enzymes of the tricarboxylic acid cycle during development of sea urchins were investigated. Unfertilized eggs showed substantial activity of citrate synthase, aconitase, NAD- and NADP-specific isocitrate dehydrogenases, fumarase and malate dehydrogenase. During development, the activity of citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase and malate dehydrogenase increases gradually, whereas the activity of fumarase remains rather constant. There is no close correlation between changes in the enzyme activity and the increase in oxygen consumption during development. Citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase are mainly localized in the mitochondrial fraction, whereas fumarase and malate dehydrogenase are present in both mitochondrial and cytosol fractions. The intracellular localization of these enzymes does not change during development. A possible mechanism for the regulation of some enzymes of the tricarboxylic acid cycle in sea urchin eggs is discussed.  相似文献   

11.
Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway.  相似文献   

12.
A full-length cDNA encoding a serine carboxypeptidase (designated SmSCP-1) was recovered from an ongoing salivary gland EST project of the wheat midge. The deduced 461-amino acid sequence had a putative signal sequence at the amino terminus, indicating it was a secreted protein. The protein shared homology with serine carboxypeptidases from other insects, mammals, plants, and yeasts. SmSCP-1 mRNA was expressed in all stages of development and detected in salivary gland and fat body tissues but not in midgut tissue. Expression analysis and quantitative real-time PCR assays in male and female wheat midges and the fat body tissue of adult midges revealed that SmSCP-1 was up-regulated nearly four-fold in the female midges compared to males and nearly two-fold in female fat body compared to male fat body. The wheat midge serine carboxypeptidase (SmSCP-1) most likely has a dual function. As a secreted digestive enzyme, it could play a role in mobilizing host-plant seed reserves for feeding larvae and as expressed in fat body could function as an exopeptidase in degradation of vitellogenin and/or in post-translational processing of other enzymes.  相似文献   

13.
14.
The effect of dietary fat on body composition, whole body lipogenesis, and enzyme activity was measured in rats over the first 16 weeks post-weaning. Rats were fed either a low fat (5% w/w fat) or high fat (20% w/w fat) diet for the first 4 weeks. After this time all rats were fed the low fat diet. The results showed no significant effect of diet on the rate of fat synthesis over the first 8 weeks of the experiment. However, the activities of the enzymes of fatty acid synthesis [glucose 6-phosphate dehydrogenase, malic enzyme, adenosine triphosphate-citrate lyase, acetyl-coenzyme A carboxylase (ACCX), fatty acid synthetase] were dependent on the age and dietary status of the animals. The exact pattern depended on the specific enzyme and the tissue source. No significant differences in pyruvate dehydrogenase (PDH) activity were observed. Mathematical analysis of the enzyme activities suggested that ACCX and PDH were the most likely sites of fat synthesis regulation. In addition, an examination of body composition and overall weight retention showed that the "weight increasing" effect of a high fat diet could be completely reversed by subsequent feeding of a low fat diet. However, the reversal required an additional 12 weeks. Interestingly, at this time the rats switched from a high fat to a low fat diet had a lower body weight and lower body fat content than rats fed a low fat diet throughout the course of the experiment.  相似文献   

15.
Abstract In this study, overwintering larvae of pine needle gall midge, Thmodiplosis jaHnensis, were sampled at various dates in the winter of 1997 and profiles of some enzymes of fatty acid metabolism were studied. During overwintering, a decrease in total lipids in T. japonensis larvae suggested the use of fat reserves to maintain basal metabolism. Activities of two enzymes associated with fatty acid synthesis, i. e. malic enzyme and ATP‐dependent citrate lyase, decreased from December to mid‐January, then increased from the end of February, indicating a reduced potential for fatty acid synthesis during the winter. Enzymes for fatty acid oxidation, as indicated by the activities of hydroxyacyl‐CoA dehydrogenase, carnitine‐palmitoyl transferase and acetoacetyl‐CoA thiolase, showed different profiles. The potential for ketone body metabolism, as measured by p‐hydroxybutyrate dehydrogenase activity, decreased in the course of winter, indicating that ketone body as a metabolic fuel during overwintering is not important.  相似文献   

16.
Metabolic pathways of proline consumption in working flight muscles and its resynthesis were investigated in the African fruit beetle, Pachnoda sinuata.Mitochondria isolated from flight muscles oxidise proline, pyruvate and α-glycerophosphate, but not palmitoyl-carnitine. At low proline concentrations, the respiration rate during co-oxidation of proline and pyruvate is additive, while at high proline concentrations it is equal to the respiration rates of proline oxidation.Flight muscles have high activities of alanine aminotransferase and NAD+-dependent malic enzyme which are involved in proline metabolism. Glycogen phosphorylase and glyceraldehyde-3-phosphate dehydrogenase (carbohydrate breakdown) also display high activities, whilst 3-hydroxyacyl-CoA dehydrogenase (fatty acid oxidation) showed low activity.During the oxidation of proline, mitochondria isolated from flight muscles produce equimolar amounts of alanine. The rates of oxygen consumption by the mitochondria during this process lead to the conclusion that proline is partially oxidised. This is confirmed by the incorporation of radiolabel from pre-injected [U-14C] proline into alanine during a flight experiment with P. sinuata.Proline is resynthesised, in vitro, from alanine and acetyl-CoA in the fat body. High activities of enzymes catalysing such pathways (alanine aminotransferase, 3-hydroxyacyl-CoA dehydrogenase and NADP+-dependent malic enzyme) were found. The in vitro production of proline from alanine is equimolar suggesting that resynthesis of one proline molecule is accomplished from one alanine molecule and one acetyl-CoA molecule. One source of the acetyl-CoA for the in vitro synthesis of proline is the lipid stores of the fat body.Proline synthesis by fat body tissue is controlled by feedback. Alanine aminotransferase is competitively inhibited by high proline concentrations.  相似文献   

17.
Orchidectomy of rats resulted in increased concentration and whole organ amount of DNA both in the epididymal fat pad and liver. Liver hexokinase (HK) and phosphofructokinase (PFK) activities were raised after orchidectomy, but were normalized by testosterone substitution. Several glycolytic enzymes, and fumarase and aspartate aminotransferase were increased by orchidectomy in epididymal fat. Most of the enzyme changes tended to normalize after testosterone administration. Activities of NADPH generating enzymes were increased after orchidectomy both in liver and epididymal fat. When related to DNA, several enzyme activities in both tissues fell following castration. However, liver HK, PFK and NADPH generating enzymes, as well as epididymal fat HK and isocitrate dehydrogenase were elevated after castration also when related to DNA. The results suggest that the influence of testosterone on cell proliferation is organ-specific. The observed enzyme alterations after orchidectomy might partly explain fat accumulation and hyperlipoproteinemia encountered in castrates.  相似文献   

18.
This study was designed to monitor the developmental changes in insulinemia and lipogenic enzyme activities in both inguinal adipose tissue and liver during suckling (7, 9, 14, and 17 days of age) and weaning (22 and 30 days of age) on to either a low-fat or a high-fat diet in lean (Fa/fa) and obese (fa/fa) rats. Tissues were removed through surgery and genotypes were retrospectively determined. During suckling, there was no difference in liver enzyme activities between the two groups. In contrast, adipose tissue fatty acid synthetase was increased by 50% and citrate cleavage enzyme and malic enzyme by 30% by 9 days of age. By 17 days of age, there was a threefold elevation in these enzyme activities and 6-phosphogluconic dehydrogenase and a twofold increase in glucose-6-phosphate dehydrogenase per inguinal fat pad in fa/fa versus Fa/fa. Consistent with these results, fat pad weight was increased by 20%, 50%, and 100% at 9, 14, and 17 days of age, respectively, in obese as compared to lean pups. However only by 17 days of age could a slight but significant increase in insulin level be detected in obese pups. Enlargement of inguinal fat pad accelerated after weaning on to a low-fat diet and still more after weaning on to a high-fat diet. Weaning on to a low-fat diet elicited an induction of hepatic lipogenic enzymes two or three times greater in fa/fa than in lean pups, while weaning on to a high-fat diet blunted the differences between genotypes. The lipogenic enzyme activities displayed per total inguinal fat were three to ten times greater in obese than in lean pups, regardless of the diet. However, adipose tissue lipogenic enzyme activities were much lower after weaning on to a high-fat than on to a low-fat diet in obese pups. The high-fat diet was as effective as the low-fat diet in triggering hyperinsulinemia in obese pups. The increased adipose tissue capacity for lipogenesis, starting during the suckling period, could play an important etiologic role in the development and maintenance of obesity in the Zucker rat.-Bazin, R., and M. Lavau. Development of hepatic and adipose tissue lipogenic enzymes and insulinemia during suckling and weaning on to a high-fat diet in Zucker rats.  相似文献   

19.
1. The activity of NAD+-linked isocitrate dehydrogenase from the radular muscle of the whelk is higher than those in many vertebrate muscles and only slightly lower than in the flight muscles of insects. The enzyme activity from the whelk (Buccinum undatum) is stable for several hours after homogenization of the radular muscle, whereas that from insect flight muscle is very unstable. Consequently, the enzyme from the whelk muscle is suitable for a systematic investigation of the effects of Ca2+ and ADP. 2. The sigmoid response of the enzyme activity to isocitrate concentration is markedly increased by raising the Ca2+ concentration from 0.001 to 10 muM, but it is decreased by ADP. The inhibitory effect of Ca2+ is most pronounced at pH7.1; it is not observed at pH 6.5. Similar effects are observed for the enzyme from the flight muscle of the locust (Schistocerca gregaria) and the water bug (Lethocerus cordofanus). The percentage activation by ADP of the enzyme from either the whelk or the insects is greater at 10 muM-Ca2+, and 50% of the maximum activation is obtained at 0.10 and 0.16 mM-ADP for the enzyme from whelk and locust respectively at this Ca2+ concentration. At 10 muM-Ca2+ in the absence of added ADP, the apparent Km for isocitrate is markedly higher than in other conditions. Ca2+ concentrations of 0.01, 0.1 and 0.2 muM cause 50% inhibition of maximum activity of the enzyme from the muscles of the whelk, locust and water bug respectively. 3. Recent work has indicated that mitochondria may play a complementary role to the sarcoplasmic reticulum in the control of the distribution of Ca2+ in muscle. The opposite effects of Ca2+ on the activities of isocitrate dehydrogenase and mitochondrial glycerol phosphate dehydrogenase from muscle tissue are consistent with the hypothesis that changes in the intracellular distribution of Ca2+ control the activities of these two enzymes in order to stimulate energy production for the contraction process in the muscle. Although both enzymes are mitochondrial, glycerol phosphate dehydrogenase resides on the outer surface of the inner membrane and responds to sarcoplasmic changes in Ca2+ concentration (i.e. an increase during contraction), whereas the isocitrate dehydrogenase resides in the matrix of the mitochondria and responds to intramitochondrial concentrations of Ca2+ (i.e. a decrease during contraction). It is suggested that changes in intramitochondrial Ca2+ concentrations are primarily responsible for regulation of the activity of NAD+-isocitrate dehydrogenase in order to control energy formation for the contractile process. However, when the muscle is at rest, changes in intramitochondrial concentrations of ADP may regulate energy formation for non-contractile processes.  相似文献   

20.
In normal females, distinct fluctuations in the protein content of the fat body and haemolymph are evident during each gonotrophic period. These fluctuations partly reflect changes in the protein requirements of the developing oocytes. Almost one half of the total protein deposited in the mature ovary is sequestered during the final stages of vitellogenesis when protein accumulated in the fat body and haemolymph is rapidly depleted. Although similar amounts of protein are deposited in the ovary during the first and subsequent gonotrophic periods, significantly less extraovarian protein is present throughout the latter periods.The accumulation of large amounts of protein in the fat body and haemolymph of ovariectomized females suggests that most yolk protein is of extraovarian origin. As the total protein content of these insects is comparable to that of vitellogenic females, ovariectomy apparently has no immediate effect on protein synthesis.Allatectomy or cautery of the median neurosecretory cells (mNSC) prevents vitellogenesis. Although protein gradually accumulates in the fat body and haemolymph of allatectomized females, the total protein content of these insects is significantly lower than that of controls. Treatment of allatectomized females with juvenile hormone analogue leads to a temporary but significant increase in the protein content of the fat body. However, the subsequent decline in fat body protein is paralleled by a pronounced increase in the protein content of the ovary. These findings suggest that the corpora allata (CA) stimulate both yolk protein synthesis in the fat body and its uptake into the ovary. The total protein content of mNSC-cauterized females is less than that of allatectomized females. This observation supports the proposal that the mNSC have not only an allatotropic effect but also a direct effect on protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号