首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

2.
The levels of ecdysteroids in Sarcophaga bullata were determined by radioimmunoassay (RIA) from the time of larviposition (0 hr) to after the 2nd ecdysis and from late larval to pupal development. Two distinct peaks of ecdysteroid activity were recorded mid-way through the first and second stadia (14 and 34 hr) and two smaller peaks occurred a few hours prior to each ecdysis. A large release of ecdysteroids occurred from 8 hr before and up to 18 hr after formation of the white prepupa. This peak initiated the formation of the prepupa, the tanning of the puparium, larval/pupal apolysis and secretion of the pupal cuticle.Assays for the cuticle tanning hormone, bursicon, in pre-ecdysial larvae were not positive and a possible role for ecdysone in pre-ecdysial tanning of larval cuticular structures is proposed.  相似文献   

3.
The total protein, chitin and soluble protein content of the abdominal cuticle of male adult locusts was analysed. After an initial period of increase, cuticular protein and chitin content levelled off with the onset of sexual maturation. After ecdysis, the amount of soluble cuticular protein increased unitil maturation. Specific cuticular protein electrophoretic bands decreased in staining intensity with development and were presumed to become bound within the cuticle. Incorporation of 3H-leucine into cuticular proteins was highest into pharate adult cuticle, then decreased after ecdysis to a constant level after maturation. Following sexual maturation when the total cuticular protein and soluble protein content remained constant incroporation of 3H-leucine continued indicating the dynamic nature of the cuticle.  相似文献   

4.
《Insect Biochemistry》1990,20(6):645-652
Post-emergence levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and ketocatechol were determined in cuticle from adult Tenebrio molitor. Possible pathways for biosynthesis of DOPAC were studied by comparing the incorporation of injected [U-14C]tyrosine, [7-14C]dopamine, [7-14C]DOPA, [7-14C]tyramine, [U-14C]p-hydroxyphenylpyruvic acid (p-HPPA) and [ring-3H]p-hydroxyphenylacetic acid (p-HPAA) into cuticular DOPAC during its period of maximal increase 1–3 days after adult emergence. Increased incorporation of [U-14C]tyrosine between days 0 and 3 suggests rapid de novo biosynthesis of DOPAC from this primary precursor. Of the putative intermediates tested, only p-HPPA had a pattern of incorporation similar to that seen with tyrosine. Since p-HPAA was poorly incorporated into both cuticle and DOPAC, a tentative pathway tyrosine → p-HPPA → 3,4-dihydroxyphenylpyruvic acid → DOPAC is proposed.  相似文献   

5.
Bursicon activity first appears in the haemolymph of the cockroach, Leucophaea maderae, early in ecdysis as the old cuticle splits and separates over the thorax. Hormonal activity reaches high levels in the haemolymph before ecdysis is complete and remains so for about 1·5 hr, with a gradual decline and disappearance by 3 hr. The sensory mechanism controlling bursicon release is located in the thorax and appears to be stimulated as the ecdysial split widens for emergence of the thorax. If the abdomen is isolated before this time no tanning of abdominal cuticle occurs, while the isolated thorax proceeds to tan. Therefore the thoracic ganglia seem to be a site of release for bursicon. Release of the hormone from abdominal and head ganglia may also occur after neural stimulation from the thoracic system. Bursicon activity was found in all ganglia of the central nervous system and the corpora cardiaca-allata complex. Removal of the old cuticle prior to the start of ecdysial behaviour does not result in tanning of the new cuticle. However, if the old cuticle is removed after the insect begins to swallow air in preparation for ecdysis, then the new cuticle tans. Mechanical prevention of ecdysis and later removal of the old cuticle also does not result in tanning of the new cuticle. Therefore, shedding of the old cuticle only activates the release of bursicon in conjunction with other normal ecdysial events.  相似文献   

6.
1. Rats were injected with [U-14C]glucose and the content of 14C in proteins and lipids of the cerebral P1 (`nuclear'), P2 (`mitochondrial'), P3 (`microsomal') and high-speed supernatant fractions was measured 7, 22 and 93hr. after injection of labelled glucose. 2. The crude brain mitochondrial fractions (P2) were subfractionated on continuous sucrose gradients (0·32–1·8m-sucrose) and the 14C content of the proteins and lipids of about 20 subfractions was measured. 3. About 40–50% of the 14C assimilated by brain proteins was found in the P2 (`mitochondrial') fraction. About 68–70% of the 14C assimilated by brain lipids was also recovered from the lipids of the P2 fraction. 4. Between 22 and 93hr. after injection of [U-14C]glucose both the amount of 14C in the protein of the P2 (`mitochondrial') fraction and the specific activity of this protein increased. The specific activity of the protein of all other particulate fractions (P1, P2 and P3) and subfractions (obtained from sucrose-density-gradient subfractionation of fraction P2) when related to the specific activity of the high-speed supernatant protein also increased during 93hr. after injection of [U-14C]glucose. The amount of 14C in the protein of the high-speed supernatant and the specific activity of this protein decreased during the same period. 5. The distribution of 14C in the lipids of all subcellular particulate fractions remained unchanged during the period 22–93hr. after injection of [U-14C]glucose. 6. It was concluded that a diffusion occurs of some supernatant proteins into subcellular particulate matter of the cerebrum and no significant preference for any subcellular particulate matter was observed. The lipids occur in the cerebrum mainly in a non-diffusible state, which is consistent with the view that they form almost entirely a part of the structure of the cerebrum. 7. The data obtained do not lend further support to the concept of axoplasmic flow within the cerebrum or the concept of a one-directional flow of mitochondria or other subcellular particles within the cerebrum.  相似文献   

7.
1. The importance of fatty acid synthesis as a pathway for the disposal of ingested glucose has been evaluated in rats and mice given a purified diet high in glucose and low in fat. [U-14C]Glucose was either added to the diet and fed for 24hr. or given by stomach tube as a 250mg. (mice) or 1000mg. (rats) meal. The two methods of isotope administration gave similar results. 2. Under the conditions employed fatty acid synthesis appeared to be a more important pathway for glucose disposal in mice than in rats. In mice 15·3% of ingested [U-14C]glucose was converted into fatty acid and in rats the corresponding value was 8·6%. In contrast, the conversion of [U-14C]glucose into cholesterol, as a percentage of dose, was twice as high in rats as in mice. 3. The effect of 20% of corn oil in the diet on the conversion of dietary [U-14C]glucose into fat was also investigated. Mice given diets containing 1% or 20% of corn oil converted 14·6% or 7·0% respectively of dietary [U-14C]glucose into fatty acid over a 24hr. period. There was no effect of fat on the incorporation of the isotope into cholesterol. 4. In mice given diets containing 1% or 20% of corn oil approx. 10% and 2% respectively of newly synthesized fatty acids were found in the liver. Hepatic fatty acid synthesis appears to be more sensitive to dietary fat than is extrahepatic synthesis.  相似文献   

8.
Suspension cultures of Glycine max were incubated for 4, 12 and 24 hr in [U-14C]glycerol in 0.2 M potassium dihydrogen phosphate, in [U-14C  相似文献   

9.
Restricted permeability of rat liver for glutamate and succinate   总被引:13,自引:13,他引:0  
1. When rat liver slices were incubated aerobically with [U-14C]glutamate the concentration of 14C within the slices remained lower (about 50%) than in the medium. The maximal concentration of 14C in the liver was reached within minutes. In rat kidney-cortex slices by contrast, 14C reached concentrations more than six times those of the medium. 2. In both liver and kidney 14C appeared in the respiratory CO2, indicating penetration of glutamate carbon into the mitochondria. In kidney slices the rate of glutamate oxidation per unit weight was about five times that in liver slices. 3. Taking into account the conversion of glutamate into glucose that occurs in the kidney but not in the liver, the flux rates of glutamate through the kidney were calculated to be about 15 times those through the liver when the external glutamate concentration was 5mm. 4. Anaerobically the glutamate concentrations in medium and tissue rapidly became equal in both liver and kidney. Thus the maintenance of concentration gradients depended on the expenditure of energy. 5. [U-14C]Succinate behaved similarly to glutamate. [U-14C]Serine was taken up more rapidly by the kidney than by the liver slices, but the concentrations reached in the liver did not remain below those of the medium. [14C]Urea was distributed evenly between medium and tissue water. 6. Incubation of liver slices with [3H]inulin indicated an extracellular space of liver slices of 26%. 7. When glutamate was generated within liver slices or the perfused liver on addition of oxaloacetate, pyruvate and a source of nitrogen, the concentration of glutamate in the tissue after 1hr. was 70–97 times that in the medium. Thus the exit of glutamate from the liver cell, like its entry, is restricted. This is borne out by measurements of the specific activity of extra- and intra-cellular glutamate on addition of [U-14C]glutamate medium. 8. Liver homogenates removed added glutamate and dicarboxylic acids 20–30 times as fast as did the perfused liver. 9. It is concluded that a major permeability barrier restricts the entry and exit through the outer liver cell membrane.  相似文献   

10.

Background  

The protective external cuticle of insects does not accommodate growth during development. To compensate for this, the insect life cycle is punctuated by a series of molts. During the molt, a new and larger cuticle is produced underneath the old cuticle. Replacement of the smaller, old cuticle culminates with ecdysis, a stereotyped sequence of shedding behaviors. Following each ecdysis, the new cuticle must expand and harden. Studies from a variety of insect species indicate that this cuticle hardening is regulated by the neuropeptide bursicon. However, genetic evidence from Drosophila melanogaster only supports such a role for bursicon after the final ecdysis, when the adult fly emerges. The research presented here investigates the role that bursicon has at stages of Drosophila development which precede adult ecdysis.  相似文献   

11.
The injection of 2-14C-dopamine into the haemocoel of the American cockroach at ecdysis results in the binding of diphenols to blood proteins. These same proteins are apparently translocated to the cuticle where the label becomes incorporated into the hard insoluble matrix. On the other hand, if labelled dopamine is injected during the pre-ecdysis period, the radioactivity is found bound to the protein but it is not incorporated into the cuticle. Further investigations have revealed that translocation occurs during the immediate postecdysial phase, which suggests that the epidermal permeability may be mediated by bursicon, the tanning hormone.  相似文献   

12.
An ecological substrate relationship between sulfate-reducing and methane-producing bacteria in mud of Lake Vechten has been studied in experiments using 14C-labeled acetate and lactate as substrates. Fluoroacetate strongly inhibited the formation of 14CO2 from [U-14C]-acetate and β-fluorolactate gave an inhibition of similar magnitude of the breakdown of [U-14C]-l-lactate to 14CO2 thus confirming earlier results on the specific action of these inhibitors. The turnover-rate constant of l-lactate was 2.37 hr-1 and the average l-lactate pool size was 12.2 μg per gram of wet mud, giving a turnover rate of 28.9 μg of lactate/gram of mud per hr. The turnover-rate constant of acetate was 0.35 hr-1 and the average pool size was 5.7 μg per gram of wet mud, giving a rate of disappearance of 1.99 μg of acetate/gram of mud per hr. Estimations of the acetate turnover rate based upon the formation of 14CO2 from [U-14C]-acetate or [1-14C]-acetate yielded figures of the same magnitude (range 0.45 to 1.74). These and other results suggest that only a portion of the lactate dissimilated is turned over through the acetate pool. The ratio of 14CO2/14CH4 produced from [U-14C]-acetate by mud was 1.32; indicating that 0.862 moles of CH4 and 1.138 moles of CO2 are formed per mole of acetate. From the rate of disappearance of acetate (0.027 μmoles/gram wet mud per hr) and the rate of methane production (0.034 μmoles/gram wet mud per hr), it may be concluded that acetate is an important precursor of methanogenesis in mud (approximately 70%). A substrate relationship between the two groups of bacteria is likely since 14CH4 was formed from [U-14C]-l-lactate.  相似文献   

13.
1. Lipogenesis has been studied in intact genetically obese mice by measuring the incorporation of a single oral dose of 250mg. of [U-14C]glucose into fatty acid and cholesterol in the liver and extrahepatic tissues. Studies were also carried out with [U-14C]glucose added to the diet and fed for 24hr. With either method of isotope administration, the conversion of [U-14C]glucose into fatty acid was greatly elevated in the livers of the obese mice. In contrast, conversion of the single dose of [14C]glucose into fatty acid in extrahepatic tissues of obese mice was only half that occurring in the non-obese litter mates. When [14C]glucose was given in the diet for 24hr. the total accumulation of labelled fatty acid in extrahepatic tissues of obese mice was slightly less than in the non-obese. Uptake of labelled glucose and conversion into fatty acid in adipose tissue of the obese mice decreased with age. 2. Conversion of the single dose of [14C]glucose into liver cholesterol was comparable in obese and non-obese mice fed on a purified low-fat diet. However, obese mice given this diet for 12 weeks accumulated 1·54% of cholesterol in the liver compared with 0·29% in the non-obese litter mates. This accumulation apparently resulted from a decrease in removal of cholesterol from the liver, rather than an increased synthesis. 3. Conversion of the single dose of [14C]glucose into extrahepatic fatty acid was decreased by 18hr. starvation proportionally as much in obese as in non-obese mice. The decrease in liver fatty acid synthesis caused by starvation also was considerable in obese mice, although somewhat less marked than in the non-obese. 4. The metabolic derangements in the liver could be more fundamental to the development of the obesity than the changes seen in extrahepatic tissues.  相似文献   

14.
l(+)-tartrate-[U-14C] or sucrose-[U-14C] was fed into grape berries and 14CO2 evolution was determined. 14CO2 evolution front l(+)-tartrate-[U-14C] was slightly higher in mature than immature berries, and that from sucrose-[U-14C] was higher in immature than mature ones. 14CO2 evolution from l(+)-tartrate-[U-14C] was irregular throughout the day until 2 or 3 weeks after flowering. This stage shifted to regular 14CO2 evolution until 6 or 7 weeks after flowering, and the mode of 14CO2 evolution showed diurnal variation; higher in the day than at night. Then the stage without variation of 14CO2 evolution followed 10 weeks after flowering. These observations indicate that tartrate is not biochemically inert in grape berries, while the amount of 14CO2 evolution from sucrose-[U-14C] was higher at night than in the day through the whole ripening process, except in the early stage.  相似文献   

15.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

16.
Mice were anaesthetized with nembutal and the effects of intraventricularly injected excitant amino acids on [U-14C]acetate metabolism were investigated. The natural excitant amino acids, l -glutamate and l -aspartate, reduced the incorporation of 14C from [U-14C]acetate into glutamine, GAB A and possibly alanine. The synthetic excitant amino acid, N-methyl-d -aspartate caused a reduction in the incorporation of 14C from intraventricularly injected [U-14C]acetate into all of the brain amino acids labelled by [U-14C]acetate within 5 min. It is suggested that these effects may be due to changes in pool sizes of tricarboxylic cycle intermediates, to inhibition of acetyl-CoA formation, or both. Differences in the metabolic effects of the synthetic and natural excitants are interpreted in terms of the uptake of the natural amino acids into glutamine-forming pool(s) of glutamate metabolism.  相似文献   

17.
1. The testis of the ram secretes considerable amounts of amino acids (200μmoles/day) into the fluid collected from the efferent ducts. The principal amino acid in this testicular fluid is glutamate, which is present in concentrations about eight times those in testicular lymph or in blood from the internal spermatic vein. 2. The concentration of glutamate in seminal plasma from the tail of the epididymis is about ten times that in testicular fluid, and, though glutamate is the major amino acid in ejaculated seminal plasma, its concentration is less than in epididymal plasma. 3. After the intravenous infusion of [U-14C]glucose, labelled glutamate was found in the testicular fluid. Radioactivity was also detected in alanine, glycine, serine plus glutamine and aspartate. Alanine had the highest specific activity, about 50% of the specific activity of blood glucose. 4. When [U-14C]glutamate was infused, the specific activity of glutamate in testicular fluid was only about 2% that in the blood plasma. 5. Testicular and ejaculated ram spermatozoa oxidized both [U-14C]glutamate and [U-14C]leucine to a small extent, but neither substrate altered the respiration from endogenous levels. 6. No radioactivity was detected in testicular spermatozoal protein after incubation with [U-14C]glutamate or [U-14C]leucine. Small amounts of radioactivity were detected in protein from ejaculated ram spermatozoa after incubation with [U-14C]glutamate. 7. The carbon of [U-14C]glucose was incorporated into amino acids by testicular spermatozoa; most of the radioactivity occurred in glutamate.  相似文献   

18.
The aim of this work was to discover the effects of lowering the temperature from 25° to 2° on the metabolism of glucose [U-14C] by tubers of Solanum tuberosum. Isotope was applied to tubers via a 50-μl hole made with a capillary pipette. Tubers were incubated for 2 hr, the pulse; then the glucose- [U-14C] was replaced with glucose, and incubation was continued for 18 hr, the chase. The detailed distribution of 14C was determined at the end of the pulse and at the end of the chase at 2°, and compared with those found at 25°. Lowering the temperature reduced the proportion of metabolized 14C that entered the respiratory pathways. At 2°, but not at 25°, hexose phosphates were the most heavily labelled fraction after the pulse: during the chase at 2° much of this label was metabolized to sucrose. We conclude that lowering the temperature preferentially restricts glycolysis and diverts hexose phosphates to sucrose. We suggest that this is an important cause of cold-inducing sweetening of the tubers and is due to cold-lability of key glycolytic enzymes.  相似文献   

19.
We examined the dose response, time course and reversibility of the effect of methyl 2-tetradecylglycidate (McN-3716, methyl palmoxirate or MEP), an inhibitor of -oxidation of fatty acids, on incorporation of radiolabeled palmitic acid ([U-14C]PA) from plasma into brain lipids of awake rats. MEP (0.1, 1 and 10 mg/kg) or vehicle was administered intravenously from 10 min to 72 hr prior to infusion of [U-14C]PA. Two hr pretreatment with MEP (0.1 to 10 mg/kg) increased brain organic radioactivity 1.2 to 1.8 fold and decreased brain aqueous radioactivity by 1.2 to 3.0 fold when compared to control values. At 10 mg/kg, MEP significantly increased brain organic fraction from 40% in controls to 85%, 30 min to 6 hr pretreatment, and resulted in a redistribution of the radiolabeled fatty acid toward triacylglycerol. MEP changed the lipid/aqueous brain ratio of incorporated [U-14C]PA from 0.67 to 5.7. The incorporation rate coefficient, k*, was significantly increased by MEP (10 mg/kg) at 2 hr (31%), 4 hr (59%) and 6 hr (34%). All effects were reversed by 72 hr, consistent with a half-life of 2 days for carnitine palmitoyl transferase I. These results indicate that intravenous MEP may be used with [1-11C]palmitic acid for studying brain lipid metabolism in vivo by positron emission tomography, as it significantly reduces the large unincorporated aqueous fraction that would result in high background radioactivity.  相似文献   

20.
Melanization in first-instar larvae of Schistocerca is controlled by a hormone released from neurosecretory axon terminals of the fine nerves posterior to the metathoracic ganglion. The hormone is not detectable in the haemolymph before the embryonic ecdysis but is present within seconds after the ecdysis has started. It is suggested that horizontal displacement of the embryonic cuticle is the trigger for the release of the hormone and that the prothoracic ganglion forms part of the neural pathway between the sensory input caused by ecdysis and the release of the hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号