首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation and development of the dorsal longitudinal flight muscles of the butterfly Pieris brassicae L have been studied by electron and light microscopy. These imaginal muscles arise from two symmetrical pairs of mesothoracic larval muscles, which are morphologically indistinguishable from the other wall muscles at the beginning of the 5th larval instar. However, 2 days before the end of this instar an accumulation of myoblasts is observed at the median region of these muscle fibres. The muscle fibres are penetrated by the myoblasts and broken into fragments. Progressive dedifferentiation of the larval fibrillar material in each of the muscle fragments is observed during the first days of the pupal development. The myoblasts within the basal lamina of the original larval muscle fibres remain associated with the muscle fragments. Myoblasts then fuse with the larval muscle fragments, which simultaneously fuse with each other. This results in the formation of rudimentary imaginal muscle fibres. The development of these fibres, particularly myofibrillogenesis, is studied until the emergence of the imago.  相似文献   

2.
A small subset of mesodermal cells continues to express twist in the late embryo of Drosophila. These cells are the precursors of adult muscles. Each late twist-expressing cell begins to divide early in the second larval instar and division continues throughout the second and third instars, resulting in a small clone of twist-expressing cells at puparium formation. Treatment with a DNA-synthesis inhibitor, hydroxyurea (HU), ablates these cells if applied during S-phase of their replication cycle. We ablated twist-expressing lineages in the larva and demonstrated that this results in the absence of subsets of muscles in the adult abdomen and leg. HU treatment during this larval period has no discernible effect on the adult epidermis or innervation. We conclude that the twist-expressing cells identified in the late embryo are the unique primordia of adult muscles. Each primordium is fated to establish 6-10 adult muscle fibres, defined here as a 'muscle fibre group'. Each primordium has a unique fate and, after ablation, is not replaced by neighbouring cells. This unique fate does not rest with a particular founder cell within the primordium but is specified at the primordium level: ablation of a subset of cells within a muscle primordium does not result in an ablation of the resulting muscle group or in a decrease in the number of fibres within that muscle group, but rather results in a uniform decrease in the number of nuclei/fibres throughout the entire muscle. Thus, the twist-expressing primordia in the abdomen appear to be fated to give rise to a particular muscle group but act as an equivalent precursor pool in the formation of that muscle group. Our results permit the conclusion that specific muscle groups in the adult leg arise from restricted pools of twist-expressing adepithelial cells in the larval imaginal disc in a similar fashion. We conclude that the fate restriction of myoblast pools in early development defines elements of the final adult muscle pattern. The fate restriction of myoblast cells may be a result of genetic determination to form a specified muscle group or, alternatively, reflect the spatial isolation of otherwise equivalent cells to form muscle-specific precursor pools.  相似文献   

3.
New sarcomere formation and length changes in sarcomeres have been investigated in the sixth dorsal longitudinal flight muscles in puparia and newly-emerged adults of Calliphora vomitoria. The hypotheses are investigated that new sarcomeres are formed during a period of rapid longitudinal growth by either Z band division or by serial addition at the ends of the muscles. At about 3 days and 9 hr after puparium formation, when the muscles are just beginning their longitudinal growth, the Z bands in existing sarcomeres appear to divide throughout the muscles. Calculations indicate that the number of sarcomeres quadruple. By 3 days and 15 hr the final number of sarcomeres is formed. Thereafter length increases in the sarcomeres account for length increases in the muscles. Sarcomere lengthening can account for a 26% increase in muscle length over the course of adult emergence. [14C] Leucine incorporation into proteins is equally distributed throughout the muscles at 3 days and 9 hr supporting the hypothesis that the new sarcomeres are formed throughout the muscles. [14C] Adenosine similarly shows no concentration of incorporation. Guide cells at the ends of the muscles appear to be pulling on the muscles. It is suggested that the tension from the guide cells is inducing the Z band division and the length increases of the sarcomeres. If the guide cells are cut, the muscles collapse and no longer increase in length.  相似文献   

4.
Miyan JA 《Tissue & cell》1990,22(5):673-680
Following successful escape from the puparium (eclosion), sets of muscles in all three segments of dipteran flies degenerate. Whereas the head and abdominal muscles degenerate in response to hormonal triggers released before, and immediately after eclosion, the thoracic muscles require a specific neural trigger encountered following eclosion. Evidence is presented for the role of neural activity in the activation of immunocytes that destroy the thoracic muscles. Removal of the neural input by severing the nerve to any particular muscle results in survival of the muscle and inactivation of the immunocyte. The destruction process can be stopped at any time by severing the nerve and the muscle fibres that remain continue to show normal physiology and response to stimulation. Elcctrophysiological recordings of the response to lethal attack are presented together with ultrastructural evidence demonstrating the invasion of muscle fibres by processes of the immunocyte.  相似文献   

5.
Thirty hours after puparium formation in Calliphora, the larval tracheal system is replaced by an air-filled pupal system. This is characterized initially by many tufts of tracheae and coiled tracheoles lying in the blood. Between the third and fourth day, the sixth dorsal longitudinal flight muscles are practically without attached tracheae and their longitudinal growth can partially occur when oxygen uptake is inhibited with potassium cyanide. Sodium iodoacetate prevents muscle growth. After the fifth day of development the pupal tracheoles spread out over the surface of the developing adult muscles. Between the seventh and ninth day, longitudinal growth and increases in the diameter of the myofibrils are halted by cyanide and iodoacetate. Some longitudinal growth and an increase in the total protein content of the muscles can occur in 1% oxygen. Air filling of the adult tracheae takes place 2–3 hr before the emergence of the adult and is accompanied by an increase in oxygen consumption of the thorax. The metabolism and growth of the muscles is discussed with respect to their changing oxygen supply.  相似文献   

6.
The origin and development of the dorso-ventral flight muscles (DVM) was studied by light and electron microscopy in Chironomus (Diptera; Nematocera). Chironomus was chosen because unlike Drosophila, its flight muscles develop during the last larval instar, before the lytic process of metamorphosis. Ten fibrillar DVM were shown to develop from a larval muscle associated with myoblasts. This muscle is connected to the imaginal leg discso that its cavity communicates with the adepithelial cells present in the disc; but no migration of myoblasts seems to take place from the imaginal leg disc towards the larval muscle or vice versa. At the beginning of the last larval instar, the myoblasts were always present together with the nerves in the larval muscle. In addition, large larval muscle cells incorporated to the imaginal discs were observed to border on the area occupied by adepithelial cells, and are probably involved in the formation of 4 other fibrillar DVM with adepithelial cells. Three factors seem to determine the number of DVM fibres: the initial number of larval fibres in the Anlage, the fusions of myoblasts with these larval fibres and the number of motor axons in the Anlage. The extrapolation of these observations to Drosophila, a higher dipteran, is discussed.  相似文献   

7.
Shell-anchored muscles that extend into the cephalopodium of five species of planktotrophic nudibranch larvae were studied by ultrastructural examination of sequential larval developmental stages. All species, regardless of larval shell type (inflated or non-inflated), showed a similar basic pattern of shell muscles. The larval retractor muscle (LRM) differentiates prior to hatching and its fibres insert on epithelia of the velum, apical plate, stomodeal region, or mantle fold. Many fibres also connect with subepithelial intrinsic muscles of the cephalopodium. Most but not all LRM fibres Project to left-sided targets and are innervated from the left cerebral ganglion. Two pedal muscles, which are innervated from the pedal ganglia, differentiate during the post-hatching larval stage and both insert primarily on pedal epithelium attached to the operculum. The left pedal muscle is anchored to the shell immediately adjacent to the attachment plaque of the LRM and consists of basal and distal tiers of muscle cells. The right pedal muscle arises on the ventral rim of the shell aperture and consists of a single tier of muscle cells. Ontogenic changes in larval retraction behaviour correlate with developmental change in the muscle effectors. Although some interspecific differences were noted, the presence of a common ground plan for larval shell muscles in these five species contrasts with previous indications of marked variability for nudibranch larval shell muscles.  相似文献   

8.
The larval salivary gland of Drosophila melanogaster synthesises a complex secretion, known as ‘glue’. which is secreted at puparium formation and then cements the puparium to its substrate. This secretion is made during the third larval instar and is stored in the gland cells as large granules. A few hours before puparium formation it is secreted into the gland's lumen by exocytosis. This process is induced by ecdysone and can be studied in vitro. Secretion is initiated about 3.5 hr after exposure of glands to ecdysone and is complete by 8 hr. The effects of varying the ecdysone concentration, of inhibitors of RNA or protein synthesis, and of withdrawing the hormone at various times after initial exposure on the process of secretion have been studied. We conclude that some event(s) occurring during the first 3 hr exposure to ecdysone is necessary to initiate secretion of the glue into the gland lumen. The possible relationship between this event(s) and the ecdysone induced changes in gene activity (puffs) which occur in the salivary glands at the same time is discussed.  相似文献   

9.
Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved.  相似文献   

10.
Puparia from Sarcophaga argyrostoma larvae reared under short days were collected daily within 24 hr of their formation and divided into two groups: one which remained at the larval rearing temperature, and one which was transferred to a different temperature. Such temperature shifts after puparium formation can modify the subsequent incidence of pupal diapause. Temperature step-ups decrease the percentage of diapause; temperature step-downs increase it. The degree of this effect increases with the size of the temperature step. The effectiveness of a temperature step-up declines with increasing time after puparium formation.The percentage of diapause finally achieved in any group is a function of both the number of inductive (short-day) photoperiods experienced during larval life and the magnitude and direction of the subsequent temperature step. Temperature step-ups can permit the expression of photoperiodic information which would otherwise be masked. A model is presented to account for these findings.  相似文献   

11.
The effects of cycloheximide on the development of the dorsal longitudinal flight muscle of 3- to 5-day-old puparia of Calliphora vomitoria have been investigated. One μg of cycloheximide injected into the puparia reduced the incorporation of 14C phenylalanine and lysine into protein to 5 and 8 per cent of their normal levels. The cycloheximide was found to have produced its maximum effect within 2 hr of its injection and increasing the concentration did not further depress the amount of amino acid incorporation. The sixth dorsal longitudinal muscles continued to increase in length after the injection of cycloheximide and the elongation of the muscle fibres was accompanied by an increase in protein content in normal and cycloheximide-treated animals. An injection of colchicine (which is believed to disrupt microtubules) immediately halted muscle growth. Electron microscopy of the muscle fibre revealed that fibres from cycloheximide-treated animals contained myofilaments, although there were some differences in myofilament structure between normal and treated animals. The formation of the muscle fibres in the absence of protein synthesis is discussed.  相似文献   

12.
The rate of loss of water and the rate of uptake of oxygen were measured continuously throughout the development of Lucilia cuprina within the puparium. Changes in these parameters were correlated with changes observed in morphology of cuticles and respiratory structures during development.In development at 26°C, there is, at 20–22 hr after puparium formation a major loss of water by mechanical expulsion of moulting fluid chiefly through the posterior larval spiracles after the severing of the posterior larval tracheae. This loss of water is essential to survival and is followed by an extremely low rate of water loss attributed to slow diffusion of water through the resulting air gap between the pupal cuticle and the puparium. There is an increase in oxygen consumption during the pupal movements associated with the casting of the larval tracheae followed by a sharp reduction in oxygen consumption until the pupal horns are everted a short time later. This combination of physiological events enables development to proceed over a wide range of conditions in the puparial environment.  相似文献   

13.
Smit WA  Velzing EH 《Tissue & cell》1986,18(3):469-478
The transformation of the slow contracting larval m. obliquus lateralis caudalis II during metamorphosis into the asynchronous indirect flight muscle, m. obliquus lateralis dorsalis, in the Colorado beetle, Leptinotarsa decemlineata, was examined by electron microscopy. Particular attention was paid to the fate of the larval muscle fibres, the origin and behaviour of the myoblasts for flight muscle development and the change of the myofibrillar filament lattice of the larva into that of the adult. In the pre-pupal period, the larval muscles dedifferentiate and fragment. At pupation, the muscle fibres consist of cell fragments containing very few myofibrils. The sarcoplasmic reticulum and the transverse tubular system are greatly reduced. The number of myoblasts developed from satellite cells by mitosis increases considerably. They penetrate the muscle fibre and surround the cell fragments. The new fibres of the flight muscle develop from myocytes fused with the larval fragments. The larval basal lamina, surrounding the cell fragments and myoblasts, is present in pupae up to 1 day old. In pupae about 2.5 days old new myofibrils appear that have the adult filament lattice. The insect muscle transformation and the repair of vertebrate muscle after injury show striking resemblances.  相似文献   

14.
 Whole-mount technique using fluorescent-labelled phalloidin for actin staining and confocal laser scanning microscopy as well as semi-thin serial sectioning, scanning and transmission electron microscopy were applied to investigate the ontogeny of the various muscular systems during larval development in the limpets Patella vulgata L. and P. caerulea L. In contrast to earlier studies, which described a single or two larval shell muscles, the pretorsional trochophore-like larva shows no less than four different muscle systems, namely the asymmetrical main head/foot larval retractor muscle, an accessory larval retractor with distinct insertion area, a circular prototroch/velar system, and a plexus-like pedal muscle system. In both Patella species only posttorsional larvae are able to retract into the shell and to close the aperture by means of the operculum. Shortly after torsion the two adult shell muscles originate independently in lateral positions, starting with two fine muscle fibres which insert at the operculum and laterally at the shell. During late larval development the main larval retractor and the accessory larval retractor become reduced and the velar muscle system is shed. In contrast, the paired adult shell muscles and the pedal muscle plexus increase in volume, and a new mantle musculature, the tentacular muscle system, and the buccal musculature arise. Because the adult shell muscles are entirely independent from the various larval muscular systems, several current hypotheses on the ontogeny and phylogeny of the early gastropod muscle system have to be reconsidered. Received: 23 June 1998 / Accepted: 25 November 1998  相似文献   

15.
The mushroom bodies (MBs) are prominent structures in the Drosophila brain that are essential for olfactory learning and memory. Characterization of the development and projection patterns of individual MB neurons will be important for elucidating their functions. Using mosaic analysis with a repressible cell marker (Lee, T. and Luo, L. (1999) Neuron 22, 451-461), we have positively marked the axons and dendrites of multicellular and single-cell mushroom body clones at specific developmental stages. Systematic clonal analysis demonstrates that a single mushroom body neuroblast sequentially generates at least three types of morphologically distinct neurons. Neurons projecting into the (gamma) lobe of the adult MB are born first, prior to the mid-3rd instar larval stage. Neurons projecting into the alpha' and beta' lobes are born between the mid-3rd instar larval stage and puparium formation. Finally, neurons projecting into the alpha and beta lobes are born after puparium formation. Visualization of individual MB neurons has also revealed how different neurons acquire their characteristic axon projections. During the larval stage, axons of all MB neurons bifurcate into both the dorsal and medial lobes. Shortly after puparium formation, larval MB neurons are selectively pruned according to birthdays. Degeneration of axon branches makes early-born gamma neurons retain only their main processes in the peduncle, which then project into the adult gamma lobe without bifurcation. In contrast, the basic axon projections of the later-born (alpha'/beta') larval neurons are preserved during metamorphosis. This study illustrates the cellular organization of mushroom bodies and the development of different MB neurons at the single cell level. It allows for future studies on the molecular mechanisms of mushroom body development.  相似文献   

16.
In Drosophila virilis salivary glands the in vitro activities of enzymes involved in the glucosamine pathway were examined during the third larval instar and in the prepupa. While glutamine-fructose-6-phosphate aminotransferase (EC 5.3.1.19) becomes inactive at the time of puparium formation, glucosamine-6-phosphate isomerase (EC 5.3.1.10) and glucosamine-6-phosphate N-acetyltransferase (EC 2.3.1.3) show maximal activities in the prepupal gland. The activity of UDP-N-acetylglucosamine pyrophosphorylase (EC 2.7.7.23) may also decrease prior to puparium formation. Incubation of larval and prepupal glands in medium containing [3H]glucose + [14C]-uridine or [14C]glucosamine and subsequent separation of intermediates of the glucosamine pathway by chromatographic procedures reveal that the capacity of the glands to incorporate the isotopes into these intermediates decreases significantly at the time of puparium formation. The results suggest that in D. virilis salivary glands the formation of aminosugars is mainly controlled by the activities of the two enzymes glutamine-fructose-6-phosphate aminotransferase and UDP-N-acetylglucosamine pyrophosphorylase.  相似文献   

17.
This study shows that homozygotes for different alleles of the lethal mutant, l(2)gl, differing in the time of death also vary in the state of their endocrine system and the puffing patterns of their salivary gland chromosomes. Homozygotes which die at the larval stage have underdeveloped prothoracic glands and normal corpora allata (CA); in those dying at the prepupal stage both the prothoracic glands and the CA are equally underdeveloped. — All the early third instar larval puffs (96–110 h., PS 1–2) develop in homozygotes; however, the reduction of some early larval puffs, normally occurring before pupariation or at puparium formation, is delayed. Some puffs are more developed than normal. — The differences in puffing patterns chiefly concerned puffs which normally appear 4–5 h before puparium formation and at puparium formation. In homozygotes lethal as larvae some of the puffs normally active at this time did not develop. However, along with some of the late larval puffs, there appeared many puffs characteristic of prepupae. — In homozygotes lethal as prepupae only the time and sequence of puff appearance was altered. Many late larval puffs were active in prepupae rather than in larvae, whereas some of the puffs, normally appearing in prepupae, were active in the larval stage.Accordingly, we propose to distinguish two groups of puff loci. 1) Hormone dependent puffs: These do not develop in larval lethals and are active only after puparium formation in pupariated lethals. 2) Autonomous puffs: Their appearance depends more on the time of development, than on hormonal background. It is suggested that the induction of hormone dependent puffs and of puparium formation is possible at low ecdysone levels, provided that the juvenile hormone level is also low.  相似文献   

18.
The mutant allele giant of Drosophila melanogaster affects the timing and the level of increase in ecdysteroid titer normally occurring at puparium formation. The third larval instar is extended by 4 days in phenotypically “giant” individuals during which the imaginal discs mature slower than normal and finally take on the folding pattern characteristic of maturity at a time when normal individuals have already formed puparia. After puparium formation, development occurs at the same rate in giant and wild-type animals. Feeding 20-hydroxyecdysone at 94 hr after oviposition allows giant larvae to develop at the same rate as wild-type larvae and to produce normal-sized adults (although at 94 hr the imaginal discs of giant lack much of the folding pattern of mature discs). Radioimmunological determination of ecdysteroid titers in giant and normal individuals indicates that the peak of ecdysteroid activity associated with puparium formation is lower in giant and occurs 4 days later than normal. These results indicate that giant is an ecdysteroid-deficient mutant with major effects on metamorphosis. Unlike previously reported ecdysteroid-deficient mutants, however, giant larvae eventually develop into adults and may be induced to undergo complete metamorphosis at the same time as wild type by feeding 20-hydroxyecdysone.  相似文献   

19.
20.
The musculature of adult specimens of Cossura pygodactylata was studied by means of F-actin labelling and confocal laser scanning microscopy (CLSM). Their body wall is comprised of five longitudinal muscle bands: two dorsal, two ventral and one ventromedial. Complete circular fibres are found only in the abdominal region, and they are developed only on the border of the segments. Thoracic and posterior body regions contain only transverse fibres ending near the ventral longitudinal bands. Almost-complete rings of transverse muscles, with gaps on the dorsal and ventral sides, surround the terminal part of the pygidium. Four longitudinal bands go to the middle of the prostomium and 5–14 paired dorso-ventral muscle fibres arise in its distal part. Each buccal tentacle contains one thick and two thin longitudinal muscle filaments; thick muscle fibres from all tentacles merge, forming left and right tentacle protractors rooted in the dorsal longitudinal bands of the body wall. The circumbuccal complex includes well-developed upper and lower lips. These lips contain an outer layer of transverse fibres, and the lower lip also contains inner oblique muscles going to the dorsal longitudinal bands. The branchial filament contains two longitudinal muscle fibres that do not connect with the body musculature. The parapodial complex includes strong intersegmental and segmental oblique muscles in the thoracic region only; chaetal retractors, protractors and muscles of the body wall are present in all body regions. Muscle fibres are developed in the dorsal and ventral mesenteries. One semi-circular fibre is developed on the border of each segment and is most likely embedded in the dissepiment. The intestine has thin circular fibres along its full length. The dorsal blood vessel has strong muscle fibres that cover its anterior part, which is called the heart. It consists of short longitudinal elements forming regular rings and inner partitions. The musculature of C. pygodactylata includes some elements that are homologous with similar muscular components in other polychaetes (i.e., the body wall and most parapodial muscles) and several unique features, mostly at the anterior end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号