首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of soil flooding on leaf gas exchange of tomato plants   总被引:4,自引:1,他引:3       下载免费PDF全文
Carbon dioxide and water vapor exchange of tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) leaves were measured before and after 24 h of soil flooding to characterize both stomatal and nonstomatal responses to the stress. Leaf epidermal conductance to water vapor decreased by 47% after flooding, accompanied by an increase in the sensitivity of stomata to changes in CO2 concentration. Assimilation rates under ambient conditions fell by 27%, and the inhibition could not be overcome by elevated CO2 partial pressures. Stomatal conductance limited the assimilation rate to approximately the same degree both before and after flooding. The reduction in photosynthetic capacity was not due to a decrease in apparent quantum yield or to an increase in photorespiration. The results were analyzed according to a recent model of photosynthesis, and possible mechanisms underlying the flooding effect are discussed.  相似文献   

2.
Photosynthetic Response of Barley Plants to Soil Flooding   总被引:1,自引:0,他引:1  
Yordanova  R.Y.  Popova  L.P. 《Photosynthetica》2001,39(4):515-520
72 to 120 h of soil flooding of barley plants (Hordeum vulgare L. cv. Alfa) led to a noticeable decrease in the rates of CO2 assimilation and transpiration, and in chlorophyll and dry mass contents. Stomatal conductance decreased following flooding without appreciable changes in the values of intercellular CO2 concentrations. A drop in the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and of the photorespiratory enzymes phosphoglycollate phosphatase (EC 3.1.3.18) and glycollate oxidase (EC 1.1.3.1) was observed, while the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) increased in all flooded plants. Flooding of barley plants caused an increase in proline content and in leaf acidity.  相似文献   

3.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

4.
《Aquatic Botany》2005,82(4):250-268
Lepidium latifolium L. is an invasive exotic crucifer that has spread explosively in wetlands and riparian areas of the western United States. To understand the ecophysiological characteristics of L. latifolium that affect its ability to invade riparian areas and wetlands, we examined photosynthesis, chlorophyll concentration, carbohydrate partitioning and nutrient uptake in L. latifolium in response to soil flooding. Photosynthesis of flooded plants was about 60–70% of the rate of unflooded controls. Chlorophyll concentrations of flooded plants were about 60–70% of the unflooded plants during 15–50 days of flooding. Flooding resulted in an increase in leaf starch concentration, but root starch concentration was not significantly affected. However, concentrations of soluble sugar were significantly higher in both leaves and roots of flooded plants than unflooded controls. On day 50 after initial flooding, the concentrations of N, P, K and Zn in leaves of flooded plants were lower than in control plants. The concentrations of Mn and Fe in leaves of flooded plants were eight and two times those of control plants, respectively. In contrast, N, P, K and Zn concentrations of roots of flooded plants were slightly higher than in unflooded plants. The concentrations of Fe and Mn in roots of flooded plants were 15 and 150 times those of the control plants, respectively. The transport of P, K, and Zn to shoots decreased and that of Mn increased under flooding. The accumulation of N, K and Zn in roots decreased and that of Mn increased in response to flooding. The results suggested that the maintenance of relatively high photosynthesis and the accumulation of soluble sugar in roots of flooded plants are important adaptations for this species in flooded environments. Despite a reduction in photosynthesis and disruption in nutrient and photosynthate allocation in response to flooding, L. latifolium was able to survive 50 days of flooding stress. Overall, L. latifolium performed like a facultative hydrophyte species under flooding.  相似文献   

5.

Background and Aims

An investigation was carried out to determine whether stomatal closure in flooded tomato plants (Solanum lycopersicum) results from decreased leaf water potentials (ψL), decreased photosynthetic capacity and attendant increases in internal CO2 (Ci) or from losses of root function such as cytokinin and gibberellin export.

Methods

Pot-grown plants were flooded when 1 month old. Leaf conductance was measured by diffusion porometry, the efficiency of photosystem II (PSII) was estimated by fluorimetry, and infrared gas analysis was used to determine Ci and related parameters.

Key Results

Flooding starting in the morning closed the stomata and increased ψL after a short-lived depression of ψL. The pattern of closure remained unchanged when ψ`L depression was avoided by starting flooding at the end rather than at the start of the photoperiod. Raising external CO2 concentrations by 100 µmol mol−1 also closed stomata rapidly. Five chlorophyll fluorescence parameters [Fq′/Fm′, Fq′/Fv′, Fv′/Fm′, non-photochemical quenching (NPQ) and Fv/Fm] were affected by flooding within 12–36 h and changes were linked to decreased Ci. Closing stomata by applying abscisic acid or increasing external CO2 substantially reproduced the effects of flooding on chlorophyll fluorescence. The presence of well-aerated adventitious roots partially inhibited stomatal closure of flooded plants. Allowing adventitious roots to form on plants flooded for >3 d promoted some stomatal re-opening. This effect of adventitious roots was not reproduced by foliar applications of benzyl adenine and gibberellic acid.

Conclusions

Stomata of flooded plants did not close in response to short-lived decreases in ψL or to increased Ci resulting from impaired PSII photochemistry. Instead, stomatal closure depressed Ci and this in turn largely explained subsequent changes in chlorophyll fluorescence parameters. Stomatal opening was promoted by the presence of well-aerated adventitious roots, implying that loss of function of root signalling contributes to closing of stomata during flooding. The possibility that this involves inhibition of cytokinin or gibberellin export was not well supported.Key words: Root to shoot communication, flooding stress, stomatal closure, photosynthesis, chlorophyll fluorescence, gas exchange, adventitious roots, plant hormones, abscisic acid, cytokinins, gibberellic acid  相似文献   

6.

Background and Aims

Erythrina speciosa is a Neotropical tree that grows mainly in moist habitats. To characterize the physiological, morphological and growth responses to soil water saturation, young plants of E. speciosa were subjected experimentally to soil flooding.

Methods

Flooding was imposed from 2 to 4 cm above the soil surface in water-filled tanks for 60 d. Non-flooded (control) plants were well watered, but never flooded. The net CO2 exchange (ACO2), stomatal conductance (gs) and intercellular CO2 concentration (Ci) were assessed for 60 d. Soluble sugar and free amino acid concentrations and the proportion of free amino acids were determined at 0, 7, 10, 21, 28 and 45 d of treatments. After 28, 45 and 60 d, dry masses of leaves, stems and roots were determined. Stem and root cross-sections were viewed using light microscopy.

Key Results

The ACO2 and gs were severely reduced by flooding treatment, but only for the first 10 d. The soluble sugars and free amino acids increased until the tenth day but decreased subsequently. The content of asparagine in the roots showed a drastic decrease while those of alanine and γ-aminobutyric increased sharply throughout the first 10 d after flooding. From the 20th day on, the flooded plants reached ACO2 and gs values similar to those observed for non-flooded plants. These events were coupled with the development of lenticels, adventitious roots and aerenchyma tissue of honeycomb type. Flooding reduced the growth rate and altered carbon allocation. The biomass allocated to the stem was higher and the root mass ratio was lower for flooded plants when compared with non-flooded plants.

Conclusions

Erythrina speciosa showed 100 % survival until the 60th day of flooding and was able to recover its metabolism. The recovery during soil flooding seems to be associated with morphological alterations, such as development of hypertrophic lenticels, adventitious roots and aerenchyma tissue, and with the maintenance of neutral amino acids in roots under long-term exposure to root-zone O2 deprivation.Key words: Erythrina speciosa, aerenchyma, amino acid content, biomass allocation, photosynthesis, flooding adaptations, stomatal conductance, O2 deficiency, γ-aminobutyric acid (GABA)  相似文献   

7.
Exposure of barley plants (Hordeum vulgare L.) to soil flooding for 2 to 24 h reduced the net photosynthetic rate and transpiration rate. Stomatal conductance also decreased in flooded plants. Stomatal closure started within 2 – 6 h and stomata remained closed up to 24 h of treatment.  相似文献   

8.
The increased frequency of heavy rains as a result of global climate change can lead to flooding and changes in light availability caused by the presence of thick clouds. To test the hypothesis that reduction in light availability can alleviate the harmful effects of soil flooding on photosynthesis, the authors studied the effects of soil flooding and acclimation from high to low light on the photosynthetic performance of Eugenia uniflora. Seedlings acclimated to full sunlight (about 35 mol m−2 d−1) for 5 months were transferred to partial sunlight (about 10 mol m−2 d−1) and were either subjected to soil flooding or not flooded. Chlorophyll fluorescence was measured throughout the flooding period and leaf gas exchange was measured 16 days after flooding was initiated. Minimal fluorescence yield (Fo) was significantly higher and the quantum efficiency of open PSII centres (Fv/Fm) was significantly lower in flooded than in non-flooded plants in full sunlight. Sixteen days after flooding was initiated, stomatal conductance (gssat) and net photosyntheses expressed on a leaf area (Asat-area), weight (Asat-wt) and chlorophyll (Asat-Chl) basis decreased in response to soil flooding. Flooding decreased stomatal conductance by similar amounts in full and partial sunlight, but Asat-area in partial and full sunlight was 3.4 and 16.8 times lower, respectively, in flooded than in non-flooded plants. These results indicate that changes from full to partial sunlight during soil flooding can alleviate the effects of flooding stress on photosynthesis in E. uniflora seedlings acclimated to full sunlight. The responses of photosynthesis in trees to flooding stress may be dependent on changes in light environment during heavy rains.  相似文献   

9.
In Amazonian floodplains, plant survival is determined by adaptations and growth strategies to effectively capture sunlight and endure extended periods of waterlogging. By measuring gas exchange, quantum efficiency of photosystem 2 (PSII), and growth parameters, we investigated the combined effects of flooding gradients and light on two common evergreen floodplain tree species, the light-tolerant Cecropia latiloba and the shade-tolerant Pouteria glomerata. Individual plants were subjected to different combinations of light and flooding intensity in short-term and long-term experiments. Plants of C. latiloba lost all their leaves under total submersion treatments (plants flooded to apex and with reduced irradiance) and showed highest maximum assimilation rates (Amax) in not flooded, high light treatments (6.1 μmol CO2 m−2 s−1). Individuals of P. glomerata showed similar patterns, with Amax increasing from 1.9 μmol CO2 m−2 s−1 under total flooding to 7.1 μmol CO2 m−2 s−1 in not flooded, high light treatments. During the long-term flooding experiment, quantum efficiency of PSII (Fv/Fm) of C. latiloba was not affected by partial flooding. In contrast, in P. glomerata Fv/Fm decreased to values below 0.73 after 120 days of total flooding. Moreover, total submergence led P. glomerata to reduce significantly light saturation point (LSP), as compared to C. latiloba. For both species morphological adjustments to long-term flooding, such as the production of adventitious roots, resulted in reduced total biomass, relative growth rate (RGR) and leaf mass ratio (LMR). Growth increase in C. latiloba seemed to be more limited by low-light than by flooding. Therefore, the predominant occurrence of this species is in open areas with high light intensities and high levels of inundation. In P. glomerata flooding induced high reductions of growth and photosynthesis, whereas light was not limiting. This species is more abundant in positions where irradiance is reduced and periods of submergence are slightly modest. We could show that the physiological requirements are directly responsible for the flooding (C. latiloba) and shade (P. glomerata) tolerance of the two species, which explains their local distribution in Amazonian floodplain forests.  相似文献   

10.
Environmental stress can affect development and yield of tomato plants. This study was undertaken to investigate the underlying mechanism asserted by kaolin on tomato physiology by evaluating its effect on leaf, canopy and inner fruit temperatures, gas exchange at the leaf and canopy scales, above ground biomass, yield and fruit quality.The study was carried out under field conditions in Southern Italy. Treatments were plants treated with kaolin-based particle film (Surround® WP) suspension and untreated plants (control).Kaolin application slightly increased leaf and canopy scale temperatures by 1.0 and 0.4 °C, respectively, transpiration rate decreased at both scales. On calm days (wind speed <0.5 m s?1) with a prevalently clear sky at midday, inner fruit temperature (tf) of kaolin-treated plants was 4.4 °C lower than the tf of control plants, while in days with clear sky-windy, and cloudy-calm, the tf did not differ.At leaf scale, net assimilation was reduced by 26% in kaolin-coated treatments. Stomatal conductance decreased by 53%, resulting in reductions of 34 and 15% in transpiration and internal CO2 concentration, respectively. Gas exchange parameters measured at canopy scale were similarly affected. In kaolin-treated plants, assimilation and evapotranspiration rates were reduced by 17 and 20%, respectively, while dark respiration was not affected. Above ground dry biomass decreased by 6.4%.Marketable yield in kaolin-treated plants was 21% higher than those measured in control plants; this is possibly related to the 96 and 79% reduction in sunburned fruit and those damaged by insects, respectively, and to the 9% increase in mean fruit weight. Kaolin treatment increased lycopene fruit content by 16%, but did not affect total soluble solids content, fruit dry matter, juice pH, titratable acidity or tomato fruit firmness. The use of kaolin-based particle film technology would be an effective tool to alleviate heat stress and to reduce water stress in tomato production under arid and semi-arid conditions.  相似文献   

11.
Li X L  Li N  Yang J  Ye F Z  Chen F J  Chen F Q 《农业工程》2011,31(1):31-39
To evaluate the tolerance of riparian plant Distylium chinense in Three Gorges Reservoir Region to anti-season flooding, a simulation flooding experiment was conducted during Autumn and Winter, and morphology and photosynthesis of D. chinense seedlings and their recovery growth after soil drainage were analyzed in different duration of flooding and flooding depth. The seedlings were submitted to four treatments: (1) 40 seedlings unflooded and watered daily as control (Unflooded, CK); (2) 120 seedlings flooded at 1 cm above the ground level (F-1 cm); (3) 120 seedlings flooded at 12 cm above the ground level (F-12 cm) and (4) 120 seedlings completely submerged with 2 m water depth (F-2 m, top of plants at 2 m below water surface). The flooding survival, plant height, stem diameter, adventitious roots, stem lenticels, epicormic shoots, chlorophyll content and photosynthesis parameters were determined at 0, 15, 30, 90 days in flooding stress and 15, 60 days after soil drainage. The results showed that the survival of the seedlings subjected to flooding was 100% for all repeated measurements in all treatments. Adventitious roots, hypertrophied lenticels and stem hypertrophy were observed in the seedlings flooded for more than 15 d, and increased with the prolonged flooding duration, while disappeared after the soil was drained. Flooding duration and flooding depth showed significant individual and interactive effects on leaf chlorophyll a (Chl a), chlorophyll b (Chl b), and their ratio, chlorophyll (a + b), the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Cs), and inter-cellular CO2 concentration (Ci) of D. chinense seedlings (P < 0.01). After 15 days of flooding, there was no significant decrease in Pn of the flooded seedlings as compared with that of the control seedlings. Pn of the flooded seedlings was significantly lower than that of the control seedlings after 30 days of flooding (P < 0.05), whereas Pn showed no significant difference among seedlings from three flooding depths. After 90 days of flooding, Pn of the F-2 m flooded seedlings was significantly lower than that of the controls, F-1 cm and F-12 cm flooded seedlings (P < 0.05), but still maintained high photosynthetic capacity. Pn of the F-1 cm and F-12 cm flooded seedlings rose gradually after soil drainage, while, it was significantly lower than that of the control seedlings after 15 days of recovery (P < 0.05). After 60 days of recovery, Pn of all seedlings flooded with different depths showed no significant difference as compared with that of the control seedlings and new leaves grew out in the F-2 m flooded seedlings. The effect of all flooding treatments on Gs, Tr, Chl a, Chl b, Chl a/Chl b and chl (a + b) was basically the same as their effect on Pn, while the effect of all flooding treatments on Ci was quite the contrary. Correlation analysis showed that Pn was positively relative with Gs, Tr, Chl a, Chl b and chl (a + b) (P < 0.05) and significantly negative with Ci (P < 0.05). Therefore, the present study demonstrates that D. chinense has high survival and good recovery growth after long-term flooding in anti-season flooding and could be taken as an excellent candidate species in the re-vegetation of water-level-fluctuation areas in Three Gorges Reservoir Region.  相似文献   

12.
To evaluate the tolerance of riparian plant Distylium chinense in Three Gorges Reservoir Region to anti-season flooding, a simulation flooding experiment was conducted during Autumn and Winter, and morphology and photosynthesis of D. chinense seedlings and their recovery growth after soil drainage were analyzed in different duration of flooding and flooding depth. The seedlings were submitted to four treatments: (1) 40 seedlings unflooded and watered daily as control (Unflooded, CK); (2) 120 seedlings flooded at 1 cm above the ground level (F-1 cm); (3) 120 seedlings flooded at 12 cm above the ground level (F-12 cm) and (4) 120 seedlings completely submerged with 2 m water depth (F-2 m, top of plants at 2 m below water surface). The flooding survival, plant height, stem diameter, adventitious roots, stem lenticels, epicormic shoots, chlorophyll content and photosynthesis parameters were determined at 0, 15, 30, 90 days in flooding stress and 15, 60 days after soil drainage. The results showed that the survival of the seedlings subjected to flooding was 100% for all repeated measurements in all treatments. Adventitious roots, hypertrophied lenticels and stem hypertrophy were observed in the seedlings flooded for more than 15 d, and increased with the prolonged flooding duration, while disappeared after the soil was drained. Flooding duration and flooding depth showed significant individual and interactive effects on leaf chlorophyll a (Chl a), chlorophyll b (Chl b), and their ratio, chlorophyll (a + b), the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Cs), and inter-cellular CO2 concentration (Ci) of D. chinense seedlings (P < 0.01). After 15 days of flooding, there was no significant decrease in Pn of the flooded seedlings as compared with that of the control seedlings. Pn of the flooded seedlings was significantly lower than that of the control seedlings after 30 days of flooding (P < 0.05), whereas Pn showed no significant difference among seedlings from three flooding depths. After 90 days of flooding, Pn of the F-2 m flooded seedlings was significantly lower than that of the controls, F-1 cm and F-12 cm flooded seedlings (P < 0.05), but still maintained high photosynthetic capacity. Pn of the F-1 cm and F-12 cm flooded seedlings rose gradually after soil drainage, while, it was significantly lower than that of the control seedlings after 15 days of recovery (P < 0.05). After 60 days of recovery, Pn of all seedlings flooded with different depths showed no significant difference as compared with that of the control seedlings and new leaves grew out in the F-2 m flooded seedlings. The effect of all flooding treatments on Gs, Tr, Chl a, Chl b, Chl a/Chl b and chl (a + b) was basically the same as their effect on Pn, while the effect of all flooding treatments on Ci was quite the contrary. Correlation analysis showed that Pn was positively relative with Gs, Tr, Chl a, Chl b and chl (a + b) (P < 0.05) and significantly negative with Ci (P < 0.05). Therefore, the present study demonstrates that D. chinense has high survival and good recovery growth after long-term flooding in anti-season flooding and could be taken as an excellent candidate species in the re-vegetation of water-level-fluctuation areas in Three Gorges Reservoir Region.  相似文献   

13.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

14.
Summary Ethylene (C2H4) accumulation in flooded soil was related to oxygen (O2), redox potential (Eh), and flooding rate. The water status response of tobacco (Nicotiana, tabacum L.) to these conditions was evaluated from stem diameter, relative water content, leaf water potential, and C2H4 content of leaf tissue. Treatments were: flooded with either 0,5, or 15 cm of water per day for 6 days. By the third day, O2 in the soil decreased to less than 9% in treatments flooded with 5 or 15 cm of water. When O2 in the soil air was less than 9% and redox potential (Eh) was less than +150 mv, most of the soil air samples contained some C2H4 and 16% contained more than 6 ppm. Very little C2H4 was present in soil air when O2 exceeded 9%. Tobacco leaf C2H4 peaked 3 days after flooding and then declined to the preflooding level a day later, one day ahead of the rapid increase in soil C2H4. Wilting developed progressively beginning with the rise of C2H4 in the soil; leaf water potential, stem diameter, and relative leaf water content all were decreased. Soil-and plant-produced C2H4 are suggested as factors in reducing root permeability and increasing resistance to water uptake by tobacco.Contribution of the USDA-SEA/AR, in cooperation with the South Carolina Experiment Station.  相似文献   

15.
Flooding is common in lowlands and areas with high rainfall or excessive irrigation. A major effect of flooding is the deprivation of O2 in the root zone, which affects several biochemical and morphophysiological plant processes. The objective of this study was to elucidate biochemical and physiological characteristics associated with tolerance to O2 deficiency in two clonal cacao genotypes. The experiment was conducted in a greenhouse with two contrasting clones differing in flood tolerance: TSA-792 (tolerant) and TSH-774 (susceptible). Leaf gas exchange, chlorophyll (Chl) fluorescence, chemical composition and oxidative stress were assessed during 40 d for control and flooded plants. Flooding induced a decrease in net photosynthesis, stomatal conductance and transpiration of both genotypes. In flood conditions, the flood-susceptible clone showed changes in chlorophyll fluorescence, reductions in chlorophyll content and increased activity of peroxidase and polyphenol oxidase. Flooding also caused changes in macro- and micronutrients, total soluble sugars and starch concentrations in different plant organs of both genotypes. Response curves for the relationship between photosynthetically active radiation (PAR) and net photosynthetic rate (P N) for flooded plants were similar for both genotypes. In flood conditions, the flood-susceptible clone exhibited (1) nonstomatal limitations to photosynthesis since decreased in maximum potential quantum yield of PSII (Fv/Fm) values indicated possible damage to the PSII light-harvesting complex; (2) oxidative stress; (3) increased leaf chlorosis; and (4) a reduction in root carbohydrate levels. These stresses resulted in death of several plants after 30 d of flooding.  相似文献   

16.
European pear is a flooding-sensitive species, and for its cultivation in lowland areas, it is necessary to carry out the grafting of scions of commercial pear varieties into rootstocks belonging to flooding-tolerant wild pear species. Flooding tolerance of Pyrus boissieriana—a type of wild pear—was studied as a promissory rootstock for commercial pear. For this purpose, 3-month-old plants of P. boissieriana were subjected for 30 days to control (C), well-irrigated treatment, short-term (15 days) flooding plus 15 days recovery (F + R) and long-term (30 days) continuous flooding (F). Physiological performance, plant morphological changes and biomass accumulation were assessed. Results showed that, although stomatal conductance, transpiration and photosynthesis were progressively decreased by flooding, when flooding was short term (i.e., 2 weeks, F + R treatment) plants were able to adequately recover their physiological activity (50–74 % with respect to controls). In contrast, when plants continued to be flooded (F treatment), the physiological activity became null and the plants died quickly after the water subsided. Adventitious rooting was the most conspicuous registered morphological response to flooding, despite that flooded plants had shorter shoots and roots than control plants. Leaf and root biomass were 63 and 89 % higher under short-term flooding (F + R) than under continuous flooding (F), condition in which plants did not survive. In conclusion, P. boissieriana appears to be a promising species for its use as rootstock of commercial pear in lowland areas prone to flooding of up to 2 weeks. However, if the flooding period is extended, plants of this species are at risk of perishing.  相似文献   

17.
Surface-irrigated cotton (Gossypium hirsutum L.) grown on slowly draining clay soil is subjected to short-term periods of waterlogging at each irrigation which generally results in reduced productivity. The sequence of above- and below-ground plant responses to transient waterlogging and the role of N availability in modifying the immediate responses were studied. Lysimeters of Marah clay loam (a Natrustalf) were instrumented to monitor soil and plant responses to a 7-day waterlogging event beginning 67 days after sowing. Cotton (‘Deltapine 61’) plants (8 per lysimeter) were grown with two levels of added N (300 kg ha−1 and 30 kg ha−1) and two irrigation treatments (flooded and control). Measured soil-O2 levels decreased rapidly upon surface flooding because water displaced air and root zone respiration consumed O2. The rate of O2 consumption was 2.7 times greater in the high-N treatment than the low-N treatment. This difference was associated with a 1.8 fold difference in numbers of observed roots. Root growth was only slightly affected by flooding. Leaf growth decreased by 28%, foliage temperature increased 2.3% and apparent photosynthesis decreased by 16%. It is suggested that flooding reduced photosynthetic activity within 2 days while other stress symptoms became apparent after about 6 days. Although this stress was reflected in a trend for decreased plant productivity, the effect of flooding on boll dry mass at harvest was not significant at the level of replication used. The single waterlogging did not cause yield reductions comparable to those observed elsewhere when several waterlogging events were imposed. Contribution from the CSIRO, Centre for Irrigation Research, Griffith, NSW, Australia and USDA-ARS, Morris, MI, USA, in cooperation with the univ. of Minnesota.  相似文献   

18.
The effect of soil flooding on photosynthesis, transpiration and stomatal conductance of Jatropha curcas seedlings were studied under natural environmental variables. Soil flooding reduced photosynthesis (P N), transpiration (E) and stomatal conductance (gs) in response to leaf positions of Jatropha curcas plants. Based on the results, we conclude that decrease in stomatal opening and stomatal limitation of photosynthesis, followed by decrease in individual leaf area are the main causes of reductions in carbon uptake of flooded seedlings. A mathematical relationship was successfully developed to describe photosynthesis, transpiration and stomatal response of Jatropha under soil flooding stress.  相似文献   

19.
Stomatal behavior and water relations of waterlogged tomato plants   总被引:10,自引:5,他引:5       下载免费PDF全文
The effects of waterlogging the soil on leaf water potential, leaf epidermal conductance, transpiration, root conductance to water flow, and petiole epinasty have been examined in the tomato (Lycopersicon esculentum Mill.). Stomatal conductance and transpiration are reduced by 30% to 40% after approximately 24 hours of soil flooding. This is not due to a transient water deficit, as leaf water potential is unchanged, even though root conductance is decreased by the stress. The stomatal response apparently prevents any reduction in leaf water potential. Experiments with varied time of flooding, root excision, and stem girdling provide indirect evidence for an influence of roots in maintaining stomatal opening potential. This root-effect cannot be entirely accounted for by alterations in source-sink relationships. Although 1-aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, is transported from the roots to the shoots of waterlogged tomato plants, it has no direct effect on stomatal conductance. Ethylene-induced petiole epinasty develops coincident with partial stomatal closure in waterlogged plants. Leaf epinasty may have beneficial effects on plant water balance by reducing light interception.  相似文献   

20.
Flooding of tomato roots results in decreased stem growth. Wehave shown that flooding will reduce levels of gibberellins(GA) in the roots, shoots, and bleeding sap of tomato plants.The adventitious roots that appear on the third day of waterloggingmay be responsible for the production of GA that accumulatein the shoot after 3 to 4 days of flooding. The endogenous GAof tomato will stimulate stem growth of tomato plants. Initially,application of gibberellic acid (GA3) will stimulate the growthof flooded plants to a greater extent than that of nonwaterloggedplants. It is suggested that one of the first effects of floodingis to reduce GA levels and so inhibit stem elongation. At alater stage of waterlogging GA3 is less effective and otherfactors appear to inhibit shoot growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号