首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aqueous vesicle or micelle suspensions from various synthetic lecithins or surfactants - most of them purified by a simple ion-exchange procedure in methanol - were investigated, some with ionic admixtures. The dielectric permittivity '(nu) between 5 kHz and 100 MHz was determined by different time-and frequency-domain methods, with attention given to electrode polarization below 1 MHz. Pure ether lecithins (used to reduce hydrolysis during preparation) as well as ester lecithins showed no dielectric dispersion below 10 MHz (Delta' 3). In contrast, even dilute colloidal solutions containing about 1 mol% (with respect to solute) ionic amphiphiles normally exhibited large dielectric dispersion (10 < Delta' < 700), especially with electrolyte present. This low-frequency dispersion is sensitive to vesicle coagulation or fusion. Underlying relaxation mechanisms are discussed, and the main relaxation is shown to be the same as for other charged colloids. This conclusion suggest a new interpretation of measurements, previously reported by other authors, who gave an interpretation in terms of correlated zwitterionic head group orientation in multilamellar lecithin liposomes. Possible effects from traces of impurities in lipids are discussed.  相似文献   

2.
The complex permittivity of sonicated aqueous solutions of purified dimyristoylphosphatidylcholine has been measured as a function of frequency between 3 kHz and 40 GHz. The dielectric spectrum of the samples shows two dispersion/absorption regions, one centered at about 80 MHz the other at about 20.GHz (30°C). Otherwise than in previous studies no additional dispersion/absorption process has been found at frequencies below 10 MHz.The complex dielectric spectrum of the samples is discussed with respect to the dynamical state of solvent water in solutions of single-bilayer vesicles. The main relaxation time of the solvent water, τ1 ((2πτ1)?1 ≈ 20 GHz), is smaller than that of pure water, τW, at the same temperature. This effect results from the action of internal depolarizing fields which obviously overcompensate and enhancement of τ1 due to specific solute/solvent interactions (hydration) as had been previously found with micellar solutions of lysolecithins.It cannot be excluded, that some solvent water shows unusual dynamical behaviour. If there exists a substantial amount of such motionally perturbed water, however, it must be characterized by a relaxation time close to that of the phosphorylcholine zwitterions, τ2 ((2πτ2)?1 ≈ 80 MHz).  相似文献   

3.
The complex permittivities of aqueous suspensions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and of DMPC packaged gramicidin A' (DMPC-GA) have been determined over the frequency range of 1 MHz to 1 GHz and the temperature range of 0-60 degrees C. A dielectric relaxation/loss has been observed at about 66 MHz for the DMPC suspension (30 degrees C) and at about 57 MHz for the DMPC-GA suspension (30 degrees C). This dielectric relaxation/loss has been attributed to the rotational mobility of the zwitterionic group of DMPC. The temperature dependence (from 60 degrees C to 0 degrees C) of this dispersion/absorption process of the DMPC suspension indicates a sharp reduction of the dielectric relaxation at about 20 degrees C. This dielectric change is related to the conversions of shape and structure of bilayer aggregates. This sharp reduction of the dielectric relaxation disappears or broadens when GA is incorporated into the DMPC aqueous suspension. The interpretation of these results is that the GA addition into the DMPC aqueous suspension induces a small decrease of the rotational mobility of the zwitterionic group above the lipid phase transition, and a small increase of the rotational mobility of the zwitterionic group below the lipid phase transition.  相似文献   

4.
On the mechanism of dielectric relaxation in aqueous DNA solutions.   总被引:1,自引:0,他引:1  
The complex dielectric response of calf thymus DNA in aqueous saline solutions has been measured from 1 MHz to 1 GHz. The results are presented in terms of the relaxation of the incremental contributions to the permittivity and conductivity from the condensed counterions surrounding the DNA molecules. Measurements of the low-frequency conductivity of the samples also lends support to the condensed counterion interpretation.  相似文献   

5.
In this paper we have measured the dielectric spectrum of water-saturated bones in native and demineralized states up to 1 GHz in the time domain. A novel method of analysis of the time domain spectroscopy data has been used. The results show a dielectric dispersion centered around 400 MHz for native samples and around 200 MHz for demineralized ones. The proposed mechanism for this dispersion is the movement of polar side chains, which is in agreement with what happens in hydrated collagen fibres.  相似文献   

6.
The dielectric behavior of the aqueous solutions of three widely differing macromolecules has been investigated: myoglobin, polyvinylpyrrolidone (PVP), and human serum low-density lipoprotein (LDL). It was not possible to interpret unambiguously the dielectric properties of the PVP solution in terms of water structure. The best interpretation of the dielectric data on the myoglobin and LDL solutions was that, in both cases, the macromolecule attracts a layer of water of hydration one or two water molecules in width. For LDL, this corresponds to a hydration factor of only 0.05 g/g, whereas for myoglobin the figure is nearer 0.6 g/g. With myoglobin, part of the water of hydration exhibits its dispersion at frequencies of a few GHz, and the rest disperses at lower frequencies, perhaps as low as 10-12 MHz. The approximate constancy of the width of the hydration shell for two molecules as dissimilar in size as LDL and myoglobin confirms that the proportion of water existing as water of hydration in a biological solution depends critically on the size of the macromolecules as well as on their concentration.  相似文献   

7.
In the present work, we provide a dielectric study on two differently concentrated aqueous lysozyme solutions in the frequency range from 1MHz to 40GHz and for temperatures from 275 to 330K. We analyze the three dispersion regions, commonly found in protein solutions, usually termed β-, γ-, and δ-relaxations. The β-relaxation, occurring in the frequency range around 10MHz and the γ-relaxation around 20GHz (at room temperature) can be attributed to the rotation of the polar protein molecules in their aqueous medium and the reorientational motion of the free water molecules, respectively. The nature of the δ-relaxation, which is often ascribed to the motion of bound water molecules, is not yet fully understood. Here we provide data on the temperature dependence of the relaxation times and relaxation strengths of all three detected processes and on the dc conductivity arising from ionic charge transport. The temperature dependences of the β- and γ-relaxations are closely correlated. We found a significant temperature dependence of the dipole moment of the protein, indicating conformational changes. Moreover we find a breakdown of the Debye-Stokes-Einstein relation in this protein solution, i.e., the dc conductivity is not completely governed by the mobility of the solvent molecules. Instead it seems that the dc conductivity is closely connected to the hydration shell dynamics.  相似文献   

8.
Dielectric constant and loss of aqueous solutions of tetra-n-butyl ammonium polyacrylate ((Bu)4NPA) were measured in the frequency range from 300 Hz to 6 MHz as compared with sodium and other salts at various conditions. Our results show that there are two dispersions observed in the low-frequency range (LFD, several ten kHz to MHz), respectively, both of which are roughly expressed as the Cole-Cole dispersion formula with Cole parameters about 0.3. The large values of dielectric increment, its nonlinear concentration dependence, and other features suggest that both dispersions are explained by relaxations of two different ionic processes. For HFD, experimental results were qualitatively similar to those have been reported and compared with theories of the Maxwell-Wagner-type effect. On the other hand, LFD may be attributable to the polarization of loosely bound counterions. A model available for LFD was presented on the basis of counterion fluctuation.  相似文献   

9.
Electrical Properties of Phospholipid Vesicles   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacitance of the membrane of phospholipid vesicles and the electrical properties of the vesicle interior have been determined. To this end the electrical properties of phospholipid vesicles have been investigated over a frequency range extending from 1 kHz to 100 MHz. The dielectric behavior is characterized by two dispersions, one placed between 1 kHz and 1 MHz and the other between 1 and 100 MHz. The relaxational behavior at low frequencies is explained by counterion movement tangential to the vesicle surface and a reasonable value for the fixed charge of the vesicles is calculated from the dispersion magnitude. The relaxation at high frequencies is of the Maxwell-Wagner type and appears caused by the phospholipid bilayer bounding the interior phase of the vesicles. It is consistent with the existence of a closed bilayer with a capacitance of about 2 μF/cm2 and an internal phase similar to the vesicle suspending medium. There is no indication of other than normally structured water inside the small vesicles.  相似文献   

10.
We describe a new procedure whereby the magnitude of the dielectric dispersion of a solution of globular protein molecules can be calculated. The protein molecule is considered to have spherical symmetry and the charged residues are thought to be situated in a medium whose dielectric constant increases continuously as a function of the distance from the centre of mass. The dipole moment of the protein in the solution is made up of two parts: the intrinsic dipole moment due to the charge distribution of the protein and the dipole moment due to polarization of the medium and the ionic cloud. When the model is applied to solutions of cytochrome c it is found that polarization of the medium results in a decrease in the dielectric dispersion amplitude. The mean square dipole moment calculated with the help of this method indicates that the fluctuation of the configurations cannot be responsible for the large dispersion in the megahertz region.  相似文献   

11.
Spontaneous vesiculation of aqueous lipid dispersions   总被引:3,自引:0,他引:3  
H Hauser  N Gains  H J Eibl  M Müller  E Wehrli 《Biochemistry》1986,25(8):2126-2134
The swelling properties of lipid mixtures consisting of phosphatidylcholine and a charged single-chain detergent have been studied. The work presented here is confined to lipid mixtures forming smectic lamellar phases in H2O. These mixtures exhibit continuous swelling with increasing water content, provided the surface charge density exceeds a threshold value of about 1-2 microC/cm2. In excess H2O, such mixtures undergo spontaneous vesiculation: unilamellar vesicles form spontaneously when excess H2O or salt solutions of moderate ionic strength (I less than 0.2) are added to the dried film of such lipid mixtures. The resulting dispersion of unilamellar vesicles is usually polydisperse. Its average size depends on the detergent/phospholipid mole ratio, decreasing with increasing detergent content. It is shown that in the phase diagram of three-component systems consisting of phosphatidylcholine, a charged single-chain detergent, and excess H2O there is a compositional range, though narrow, within which the small unilamellar vesicle (diameter less than 100 nm) is the thermodynamically most stable structure. This behavior is characteristic of charged, single-chain detergents of 14 and more C atoms. Many pharmacologically active compounds are amphiphilic and surface-active, and as such, they will orient at phospholipid-water interfaces, imparting a net surface charge to neutral lipid surfaces. It is shown that such drugs exhibit detergent-like action. Mixed films of phosphatidylcholine and a pharmacologically active compound behave similarly to phosphatidylcholine-detergent mixtures: they undergo spontaneous vesiculation when excess H2O or salt solutions of moderate ionic strength are added. In this case, the drug itself induces vesiculation; possible pharmacological implications of this finding are discussed.  相似文献   

12.
Abraham T  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2005,44(33):11279-11285
The binding of the amphiphilic, positively charged, cyclic beta-sheet antimicrobial decapeptide gramicidin S (GS) to various lipid bilayer model membrane systems was studied by isothermal titration calorimetry. Large unilamellar vesicles composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoylphosphatidylcholine or the anionic phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, or a binary mixture of the two, with or without cholesterol, were used to mimic the lipid compositions of the outer monolayers of the lipid bilayers of mammalian and bacterial membranes, respectively. Dynamic light scattering results suggest the absence of major alterations in vesicle size or appreciable vesicle fusion upon the binding of GS to the lipid vesicles under our experimental conditions. The binding isotherms can be reasonably well described by a one-site binding model. GS is found to bind with higher affinity to anionic phosphatidylglycerol than to zwitterionic phosphatidylcholine vesicles, indicating that electrostatic interactions in the former system facilitate peptide binding. However, the presence of cholesterol reduced binding only slightly, indicating that the binding of GS is not highly sensitive to the order of the phospholipid bilayer system. Similarly, the measured positive endothermic binding enthalpy (DeltaH) varies only modestly (2.6 to 4.4 kcal/mol), and the negative free energy of binding (DeltaG) also remains relatively constant (-10.9 to -12.1 kcal/mol). The relatively large but invariant positive binding entropy, reflected in relatively large TDeltaS values (13.4 to 16.4 kcal/mol), indicates that GS binding to phospholipid bilayers is primarily entropy driven. Finally, the relative binding affinities of GS for various phospholipid vesicles correlate relatively well with the relative lipid specificity for GS interactions with bacterial and erythrocyte membranes observed in vivo.  相似文献   

13.
The interaction and mixing of membrane components in sonicated unilamellar vesicles and also non-sonicated multilamellar vesicles prepared from highly purified phospholipids suspended in NaCl solutions has been examined. Electron microscopy and differential scanning calorimetry were used to characterize the extent and kinetics of mixing of membrane components between different vesicle populations. No appreciable fusion was detected between populations of non-sonicated phospholipid vesicles incubated in aqueous salt (NaCl) solutions. Mixing of vesicle membrane components via diffusion of phospholipid molecules between vesicles was observed in populations of negatively charged phosphatidylglycerol vesicles but similar exchange diffusion was not detected in populations of neutral phosphatidylcholine vesicles. Incubation of sonicated vesicle populations at temperatures close to or above the phospholipid transition temperature resulted in an increase in vesicle size and mixing of vesicle membrane components as determined by a gradual change in the thermotropic properties of the mixed vesicle population. The interaction of purified phospholipid vesicles was also examined in the presence of myristic acid and lysolecithin. Our results indicate that while these agents enhance mixing of vesicle membrane components, in most cases mixing probably proceeds via diffusion of phospholipid molecules rather than by fusion of entire vesicles. Increased mixing of vesicle membrane components was also produced when vesicles were prepared containing a purified hydrophobic protein (myelin proteolipid apoprotein) or were incubated in the presence of dimethylsulfoxide. In these two systems, however, the evidence suggests that mixing of membrane components results from the fusion of entire vesicles.  相似文献   

14.
We consider the influence of the molecular structure of phospholipid membranes on their dielectric properties in the radio frequency range. Membranes have a stratified dielectric structure on the submolecular level, with the lipid chains forming a central hydrophobic layer enclosed by the polar headgroups (HGs) and bound water layers. In our numerical model, isotropic permittivities of 2.2 and 48.8 were assigned to the lipid chain and bound water layers, respectively. The HG region was assumed to possess an anisotropic static permittivity with 142.2 and 30.2 in the tangential and normal directions, respectively. The permittivities of the HG and bound water regions have been assumed to disperse at frequencies around 51 and 345 MHz to become 2.2 and 1.8, respectively, in both the normal and tangential directions. Electric field distribution and absorption were calculated for phospholipid vesicles with 75 nm radius as an example. Significant absorption has been obtained in the HG and bound water regions. Averaging the membrane absorption over the layers resulted in a decreased absorption below 1 GHz but a more than 10-fold increase above 1 GHz, compared to a model with a homogeneous membrane of averaged properties. We propose single particle dielectric spectroscopy by AC electrokinetics at low-bulk medium conductivities for an experimental verification of our model.  相似文献   

15.
The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine [POPC]) and anionic phospholipids {1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(glycerol)] [POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphoserine] [POPS]}, with or without cholesterol, were used as model membrane systems. Dynamic light scattering results indicate the absence of any peptide-induced major alteration in vesicle size or vesicle fusion under our experimental conditions. The binding of GS14dK4 is significantly influenced by the surface charge density of the phospholipid bilayer and by the presence of cholesterol. Specifically, a significant reduction in the degree of binding occurs when three-fourths of the anionic lipid molecules are replaced with zwitterionic POPC molecules. No measurable binding occurs to cholesterol-containing zwitterionic vesicles, and a dramatic drop in binding is observed in the cholesterol-containing anionic POPG and POPS membranes, indicating that the presence of cholesterol markedly reduces the affinity of this peptide for phospholipid bilayers. The binding isotherms can be described quantitatively by a one-site binding model. The measured endothermic binding enthalpy (DeltaH) varies dramatically (+6.3 to +26.5 kcal/mol) and appears to be inversely related to the order of the phospholipid bilayer system. However, the negative free energy (DeltaG) of binding remains relatively constant (-8.5 to -11.5 kcal/mol) for all lipid membranes examined. The relatively small variation of negative free energy of peptide binding together with a pronounced variation of positive enthalpy produces an equally strong variation of TDeltaS (+16.2 to +35.0 kcal/mol), indicating that GS14dK4 binding to phospholipids bilayers is primarily entropy driven.  相似文献   

16.
The dielectric properties of sonicated calf-thymus DNA sodium salt in aqueous solutions have been studied in the frequency range from 40 MHz to 2 GHz by time domain spectroscopy (TDS). A dielectric dispersion not previously reported was found, which has a characteristic frequency of about 150 MHz. All of the dielectric parameters are insensitive to the size of DNA fragments and to helix-to-coil transitions. The study of this dispersion as a function of DNA concentration and temperature allows us to conclude that it may be due to counterion fluctuation on short sections, probably in a direction transverse to the macromolecular axis.  相似文献   

17.
The dielectric dispersion in the MHz range of the zwitterionic dipolar phosphocholine head groups has been measured from 0–70°C for various mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol. The abrupt change in the derived relaxation frequency f2 observed for pure DPPC at the gel-to-liquid crystalline phase transition at 42°C reduces to a more gradual increase of frequency with temperature as the cholesterol content is increased. In general the presence of cholesterol increases the DPPC head group mobility due to its spacing effect. Below 42°C no sudden changes in f2 are found at 20 or 33 mol% cholesterol, where phase boundaries have been suggested from other methods. Above 42°C, however, a decrease in f2 at cholesterol contents up to 20–30 mol% is found. This is thought to be partly due to an additional restricting effect of the cholesterol on the number of hydrocarbon chain conformations and consequently on the area occupied by the DPPC molecules.  相似文献   

18.
The electric permittivity of alfalfa virus particles in buffer solutions of three different concentrations at pH 7 was studied between 10 kHz and 100 MHz. The experimental results could be described with one single dispersion curve of the Cole-Cole type characterized by a concentration independent specific dielectric increment and mean relaxation time. The results were interpreted semi-quantitatively in terms of counterions–atmosphere polarizability, neglecting counterion repulsion.  相似文献   

19.
The relative permittivity of aqueous solutions of human serum low density lipoprotein (LDL) and partially trypsin digested lipoprotein (T-LDL) has been determined for various concentrations at 20°C over the frequency range 0.15–100 MHz. Comparison of the dielectric dispersion curves for the digested lipoprotein with those for the native preparation revealed a larger low-frequency dielectric increment, which may be attributed to an increase in the number of counterions moving over the surface of the molecule. An explanation of this observation is an elevation of 70% in the net negative charge on the surface of the trypsin-treated particle as compared to its native counterpart.  相似文献   

20.
Dielectric relaxation (DR) study was performed to reveal the hydration change of Pseudomonas aeruginosa ferric cytochrome c551 (PA c551) in dilute aqueous solutions upon the acid unfolding which undergoes a two-state transition. The DR spectrum of a small spherical region containing a PA c551 molecule and its surrounding water shell was derived from the solution and solvent spectra by dielectric mixture theories. The derived spectrum was well-fitted with a sum of a Debye relaxation component (C1) with a DR frequency around 4.7 GHz and the bulk solvent component (CB). Upon acid unfolding, the DR amplitude of CB decreased with decreasing pH in an inverse manner to that of C1, while the total DR amplitude was almost constant. It indicates that C1 is due to the hydration water of PA c551. Little change in the DR frequency of C1 and a 1.7-fold increase in hydration number were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号