首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA ends are generated during double-strand-break repair and recombination. A p70-p86 heterodimer, Ku, accounts for the DNA end binding activity in eukaryotic cell extracts. When one or both subunits of Ku are missing, mammalian cells are deficient in double-strand-break repair and in specialized recombination, such as V(D)J recombination. Little is known of which regions of Ku70 and Ku86 bind to each other to form the heterodimeric complex or of which regions are important for DNA end binding. We have done genetic and biochemical studies to examine the domains within the two subunits important for protein assembly and for DNA end binding. We found that the C-terminal 20-kDa region of Ku70 and the C-terminal 32-kDa region of Ku86 are important for subunit-subunit interaction. For DNA binding, full-length individual subunits are inactive, indicating that heterodimer assembly precedes DNA binding. DNA end binding activity by the heterodimer requires the C-terminal 40-kDa region of Ku70 and the C-terminal 45-kDa region of Ku86. Leucine zipper-like motifs in both subunits that have been suggested as the Ku70-Ku86 interaction domains do not appear to be the sites of such interaction because these are dispensable for both assembly and DNA end binding. On the basis of these studies, we have organized Ku70 into nine sequence regions conserved between Saccharomyces cerevisiae, Drosophila melanogaster, mice, and humans; only the C-terminal three regions are essential for assembly (amino acids [aa] 439 to 609), and the C-terminal four regions appear to be essential for DNA end binding (aa 254 to 609). Within the minimal active fragment of Ku86 necessary for subunit interaction (aa 449 to 732) and DNA binding (aa 334 to 732), a proline-rich region is the only defined motif.  相似文献   

3.
The Ku protein is composed of two polypeptide subunits, p70 and p80, and binds DNA ends in vitro. Previous studies suggested that p70 and p80 are physically associated in vivo, although such an association may have been mediated by DNA. We have now utilized full-length Ku polypeptides synthesized in vitro to examine the association of p70, p80, and linear DNA to form a complex. In gel filtration chromatography, p70 migrates as a 70-kDa structure, whereas p80 migrates at 150 kDa. Co-translation of the two cDNAs yields complexes which migrate at 300 kDa and contain equimolar quantities of the p70 and p80 polypeptides, providing direct evidence that p70 and p80 assemble into a complex in the absence of DNA. To demonstrate that this recombinant protein complex binds DNA, we developed a radiolabeled protein electrophoretic mobility shift assay. When radiolabeled proteins synthesized in vitro were incubated with linear DNA and fractionated in a nonreducing, nondenaturing gel, a band representing a complex of p70, p80, and the DNA was seen. Formation of this Ku-DNA complex required free DNA ends, and binding to DNA ends was not observed with individual p70 or p80 subunits. DNA binding was not reconstituted by mixing the individual subunits together. These studies thus demonstrate that it is the complex of p70 and p80, not individual p70 or p80, which possesses the DNA binding properties previously described for native Ku protein. These results provide new information about the assembly, structure, and DNA binding properties of the Ku protein.  相似文献   

4.
Ku is a heterodimer of Ku70 and Ku86 that binds to double-stranded DNA breaks (DSBs), activates the catalytic subunit (DNA-PKcs) when DNA is bound, and is essential in DSB repair and V(D)J recombination. Given that abnormalities in Ig gene rearrangement and DNA damage repair are hallmarks of multiple myeloma (MM) cells, we have characterized Ku expression and function in human MM cells. Tumor cells (CD38(+)CD45RA(-)) from 12 of 14 (86%) patients preferentially express a 69-kDa variant of Ku86 (Ku86v). Immunoblotting of whole cell extracts (WCE) from MM patients shows reactivity with Abs targeting Ku86 N terminus (S10B1) but no reactivity with Abs targeting Ku86 C terminus (111), suggesting that Ku86v has a truncated C terminus. EMSA confirmed a truncated C terminus in Ku86v and further demonstrated that Ku86v in MM cells had decreased Ku-DNA end binding activity. Ku86 forms complexes with DNA-PKcs and activates kinase activity, but Ku86v neither binds DNA-PKcs nor activates kinase activity. Furthermore, MM cells with Ku86v have increased sensitivity to irradiation, mitomycin C, and bleomycin compared with patient MM cells or normal bone marrow donor cells with Ku86. Therefore, this study suggests that Ku86v in MM cells may account for decreased DNA repair and increased sensitivity to radiation and chemotherapeutic agents, whereas Ku86 in MM cells confers resistance to DNA damaging agents. Coupled with a recent report that Ku86 activity correlates with resistance to radiation and chemotherapy, these results have implications for the potential role of Ku86 as a novel therapeutic target.  相似文献   

5.
Genome projects are identifying an ever-increasing number of genes, accelerating the need for reagents to study the expression of these genes and elucidate the function and cellular location of the gene products. Our goal was to develop a strategy to allow human single-chain variable fragment (scFv) antibodies to be used for these endeavors. A library containing 7x10(9) individual variants was displayed by bacteriophage and selected against a biotinylated peptide corresponding to the C-terminal 15 amino acid residues of Ku86, one component of a heterodimer involved in double-stranded DNA break repair. Four unique scFv antibodies were recovered that not only recognized the selected peptide, but also the intact protein. Three of the scFv antibodies were expressed in soluble form and recognized Ku86 by Western analysis. The affinity of one of the scFv antibodies for Ku86 was 16 nM as measured by BIAcore analysis. scFv immunoprecipitation of Ku86 also isolated the other component of the heterodimer, Ku70, as determined by Western analysis and mass spectrometry. These results demonstrate the utility of scFv antibodies as invaluable reagents for functional genomics.  相似文献   

6.
A central region of Ku80 mediates interaction with Ku70 in vivo.   总被引:4,自引:0,他引:4       下载免费PDF全文
Ku, the DNA binding component of DNA-dependent protein kinase (DNA-PK), is a heterodimer composed of 70 and 86 kDa subunits, known as Ku70 and Ku80 respectively . Defects in DNA-PK subunits have been shown to result in a reduced capacity to repair DNA double-strand breaks. Assembly of the Ku heterodimer is required to obtain DNA end binding activity and association of the DNA-PK catalytic subunit. The regions of the Ku subunits responsible for heterodimerization have not been clearly defined in vivo . A previous study has suggested that the C-terminus of Ku80 is required for interaction with Ku70. Here we examine Ku subunit interaction using N- and C-terminal Ku80 deletions in a GAL4-based two-hybrid system and an independent mammalian in vivo system. Our two-hybrid study suggests that the central region of Ku80, not its C-terminus, is capable of mediating interaction with Ku70. To determine if this region mediates interaction with Ku70 in mammalian cells we transfected xrs-6 cells, which lack endogenous Ku80, with epitope-tagged Ku80 deletions carrying a nuclear localization signal. Immunoprecipitation from transfected cell extracts revealed that the central domain identified by the GAL4 two-hybrid studies stabilizes and co-immunoprecipitates with endogenous xrs-6 Ku70. The central interaction domain maps to the internally deleted regions of Ku80 in the mutant cell lines XR-V9B and XR-V15B. These findings indicate that the internally deleted Ku80 mutations carried in these cell lines are incapable of heterodimerization with Ku70.  相似文献   

7.
The DNA-dependent protein kinase (DNA-PK) complex is a serine/threonine protein kinase comprised of a 469-kDa catalytic subunit (DNA-PKcs) and the DNA binding regulatory heterodimeric (Ku70/Ku86) complex Ku. DNA-PK functions in the nonhomologous end-joining pathway for the repair of DNA double-stranded breaks (DSBs) introduced by either exogenous DNA damage or endogenous processes, such as lymphoid V(D)J recombination. Not surprisingly, mutations in Ku70, Ku86, or DNA-PKcs result in animals that are sensitive to agents that cause DSBs and that are also immune deficient. While these phenotypes have been validated in several model systems, an extension of them to humans has been missing due to the lack of patients with mutations in any one of the three DNA-PK subunits. The worldwide lack of patients suggests that during mammalian evolution this complex has become uniquely essential in primates. This hypothesis was substantiated by the demonstration that functional inactivation of either Ku70 or Ku86 in human somatic cell lines is lethal. Here we report on the functional inactivation of DNA-PKcs in human somatic cells. Surprisingly, DNA-PKcs does not appear to be essential, although the cell line lacking this gene has profound proliferation and genomic stability deficits not observed for other mammalian systems.  相似文献   

8.
DNA non-homologous end joining, the major mechanism for the repair of DNA double-strands breaks (DSB) in mammalian cells requires the DNA-dependent protein kinase (DNA-PK), a complex composed of a large catalytic subunit of 460 kDa (DNA-PKcs) and the heterodimer Ku70–Ku80 that binds to double-stranded DNA ends. Mutations in any of the three subunits of DNA-PK lead to extreme radiosensitivity and DSB repair deficiency. Here we show that the 283 C-terminal amino acids of Ku80 introduced into the Chinese hamster ovary cell line CHO-K1 have a dominant negative effect. Expression of Ku(449–732) in CHO cells was verified by northern blot analysis and resulted in decreased Ku-dependent DNA end-binding activity, a diminished capacity to repair DSBs as determined by pulsed field gel electrophoresis and decreased radioresistance determined by clonogenic survival. The stable modifications observed at the molecular and cellular level suggest that this fragment of Ku80 confers a dominant negative effect providing an important mechanism to sensitise radioresistant cells.  相似文献   

9.
M Yaneva  T Kowalewski    M R Lieber 《The EMBO journal》1997,16(16):5098-5112
DNA-dependent protein kinase (DNA-PK or the scid factor) and Ku are critical for DNA end-joining in V(D)J recombination and in general non-homologous double-strand break repair. One model for the function of DNA-PK is that it forms a complex with Ku70/86, and this complex then binds to DNA ends, with Ku serving as the DNA-binding subunit. We find that DNA-PK can itself bind to linear DNA fragments ranging in size from 18 to 841 bp double-stranded (ds) DNA, as indicated by: (i) mobility shifts; (ii) crosslinking between the DNA and DNA-PK; and (iii) atomic-force microscopy. Binding of the 18 bp ds DNA to DNA-PK activates it for phosphorylation of protein targets, and this level of activation is not increased by addition of purified Ku70/86. Ku can stimulate DNA-PK activity beyond this level only when the DNA fragments are long enough for the independent binding to the DNA of both DNA-PK and Ku. Atomic-force microscopy indicates that under such conditions, the DNA-PK binds at the DNA termini, and Ku70/86 assumes a position along the ds DNA that is adjacent to the DNA-PK.  相似文献   

10.
DNA double-strand breaks are a serious threat to genome stability and cell viability. One of the major pathways for the repair of DNA double-strand breaks in human cells is nonhomologous end-joining. Biochemical and genetic studies have shown that the DNA-dependent protein kinase (DNA-PK), XRCC4, DNA ligase IV, and Artemis are essential components of the nonhomologous end-joining pathway. DNA-PK is composed of a large catalytic subunit, DNA-PKcs, and a heterodimer of Ku70 and Ku80 subunits. Current models predict that the Ku heterodimer binds to ends of double-stranded DNA, then recruits DNA-PKcs to form the active protein kinase complex. XRCC4 and DNA ligase IV are subsequently required for ligation of the DNA ends. Magnesium-ATP and the protein kinase activity of DNA-PKcs are essential for DNA double-strand break repair. However, little is known about the physiological targets of DNA-PK. We have previously shown that DNA-PKcs and Ku undergo autophosphorylation, and that this correlates with loss of protein kinase activity. Here we show, using electron spectroscopic imaging, that DNA-PKcs and Ku interact with multiple DNA molecules to form large protein-DNA complexes that converge at the base of multiple DNA loops. The number of large protein complexes and the amount of DNA associated with them were dramatically reduced under conditions that promote phosphorylation of DNA-PK. Moreover, treatment of autophosphorylated DNA-PK with the protein phosphatase 1 catalytic subunit restored complex formation. We propose that autophosphorylation of DNA-PK plays an important regulatory role in DNA double-strand break repair by regulating the assembly and disassembly of the DNA-PK-DNA complex.  相似文献   

11.
12.
13.
A single-stranded DNA-dependent ATPase activity, consisting of two subunits of 83 kDa (p90) and 68 kDa (p70), was previously purified from HeLa cells (Vishwanatha, J.K. and Baril, E.F. (1990) Biochem 29, 8753–8759). Homology of the two subunits of single-stranded DNA-dependent ATPase with the human Ku protein (Caoet al. (1994) Biochem 33, 8548–8557) and identity of the Ku protein as the human DNA helicase II (Tutejaet al. (1994) EMBO J. 13, 4991–5001) have been reported recently. Using antisera raised against the subunits of the HDH II, we confirm that the Hela single-stranded DNA-dependent ATPase is the HDH II. Similar to the activity reported for Ku protein, ssDNA-dependent ATPase binds to double-stranded DNA and the DNA-protein complex detected by gel mobility shift assay consists of both the ATPase subunits. The p90 subunit is predominantly nuclear and is easily dissociated from chromatin. The p70 is distributed in cytosol and nucleus, and a fraction of the nuclear p70 protein is found to be associated with the nuclear matrix. Both the p90 and p70 subunits of the ATPase are present in G1 and S phase of the cell cycle and are rapidly degraded in the G2/M phase of the cell cycle.Abbreviations ssDNA single-stranded DNA - dsDNA double-stranded DNA - ATPase adenosine triphosphatase - HDH II human DNA helicase II - PGK 3-phosphoglycerate kinase  相似文献   

14.
The Ku autoantigen is a human nuclear, DNA-binding heterodimer of 70kDa and 86kDa proteins. It is the target of autoantibodies in several autoimmune diseases. We now report the expression of a cDNA encoding the 70kDa Ku protein. Large amounts of protein were obtained using a recombinant baculovirus vector, in contrast with earlier unsuccessful attempts using other expression systems. We demonstrate that the 70kDa Ku protein is targeted to the nucleus and is associated with the nuclear matrix when expressed in the absence of the 86kDa Ku component. No post-translational modifications were observed. The 70kDa protein binds double and single-stranded DNA with very high affinity. Our results suggest that the baculovirus expression system may be of widespread use in the production and characterization of human autoantigens.  相似文献   

15.
DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer   总被引:5,自引:0,他引:5  
  相似文献   

16.
Ku protein binds broken DNA ends, triggering a double-strand DNA break repair pathway. The spatial arrangement of the two Ku subunits in the initial Ku-DNA complex, when the Ku protein first approaches the broken DNA end, is not well defined. We have investigated the geometry of the complex using a novel set of photocross-linking probes that force Ku protein to be constrained in position and orientation, relative to a single free DNA end. Results suggest that this complex is roughly symmetric and that both Ku subunits make contact with an approximately equal area of the DNA. The complex has a strongly preferred orientation, with Ku70-DNA backbone contacts located proximal and Ku80-DNA backbone contacts located distal to the free end. Ku70 also contacts functional groups in the major groove proximal to the free end. Ku80 apparently does not make major groove contacts. Results are consistent with a model where the Ku70 and Ku80 subunits contact the major and minor grooves of DNA, respectively.  相似文献   

17.
Interaction of human Ku70 with TRF2   总被引:19,自引:0,他引:19  
Song K  Jung D  Jung Y  Lee SG  Lee I 《FEBS letters》2000,481(1):81-85
Ku, a heterodimer of 70- and 80-kDa subunits, plays a general role in the metabolism of DNA ends in eukaryotic cells, including double-strand DNA break repair, V(D)J recombination, and maintenance of telomeres. We have utilized the yeast two-hybrid system to identify Ku70-interacting proteins other than Ku80. Two reactive clones were found to encode the dimerization domain of TRF2, a mammalian telomeric protein that binds to duplex TTAGGG repeats at chromosome ends. This interaction was confirmed using bacterial fusion proteins and co-immunoprecipitations from eukaryotic cells overexpressing TRF2. The transfected TFR2 colocalized with Ku70.  相似文献   

18.
On the mechanisms of Ku protein binding to DNA.   总被引:6,自引:0,他引:6  
The in vitro DNA-binding activity of Ku protein, a heterodimer of 70 and 86 kDa subunits, was studied using affinity-purified protein. Ku protein bound to different DNA probes and displayed a multiple-band pattern in band mobility shift assays. The protein-DNA complex formation was effectively blocked by different DNA competitors, indicating a non-sequence specific binding of Ku protein to DNA; no preference of binding of Ku protein to regulatory sequences derived from U1 snRNA, U6 snRNA or nucleolar protein p120 genes was observed. The number and size of the Ku protein-DNA complexes increased with increasing of the protein concentration and the size of DNA probe, suggesting that the protein accumulates on the DNA fragment until saturation of the binding sites. In UV-crosslinking experiments, the binding of Ku protein to DNA was shown to start with the 70 kDa subunit contacting free DNA ends.  相似文献   

19.
Uegaki K  Adachi N  So S  Iiizumi S  Koyama H 《DNA Repair》2006,5(3):303-311
Ku, the heterodimer of Ku70 and Ku86, plays crucial roles in non-homologous end-joining (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells. It has recently been reported that heterozygous disruption of the human KU86 locus results in haploinsufficient phenotypes, including retarded growth, increased radiosensitivity, elevated p53 levels and shortened telomeres. In this paper, however, we show that heterozygous inactivation of either the KU70 or KU86 gene does not cause any defects in cell proliferation or DSB repair in human somatic cells. Moreover, although these heterozygous cell lines express reduced levels of both Ku70 and Ku86, they appear to maintain overall genome integrity with no elevated p53 levels or telomere shortening. These results clearly indicate that Ku haploinsufficiency is not a commonly observed phenomenon in human cells. Our data also suggest that the impact of KU70/KU86 mutations on telomere metabolism varies between cell types in humans.  相似文献   

20.
Lee SH  Kim CH 《Molecules and cells》2002,13(2):159-166
DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase that is activated upon DNA damage generated by ionizing radiation or UV-irradiation. It is a three-protein complex consisting of a 470-kDa catalytic subunit (DNA-PKcs) and the regulatory DNA binding subunits, Ku heterodimer (Ku70 and Ku80). Mouse and human cells deficient in DNA-PKcs are hypersensitive to ionizing radiation and defective in V(D)J recombination, suggesting a role for the kinase in double-strand break repair and recombination. The Ku heterodimer binds to double-strand DNA breaks produced by either DNA damage or recombination, protects DNA ends from degradation, orients DNA ends for re-ligation, and recruits its catalytic subunit and additional factors necessary for successful end-joining. DNA-PK is also involved in an early stage of damage-induced cell cycle arrest, however, it remains unclear how the enzyme senses DNA damage and transmits signals to downstream gene(s) and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号