首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CelB (BH0603) from Bacillus halodurans is a modular glycoside hydrolase with a family 5 catalytic module, an immunoglobulin-like module, and module PfamB of unknown function. The recombinant PfamB module bound to Avicel and was essential for CelB hydrolytic function. We propose that module PfamB be designated a new carbohydrate-binding module.  相似文献   

2.
Two thermostable endocellulases, CelA and CelB, were purified from Thermotoga neapolitana. CelA (molecular mass, 29 kDa; pI 4.6) is optimally active at pH 6.0 at 95°C, while CelB (molecular mass, 30 kDa; pI 4.1) has a broader optimal pH range (pH 6.0 to 6.6) at 106°C. Both enzymes are characterized by a high level of activity (high Vmax value and low apparent Km value) with carboxymethyl cellulose; the specific activities of CelA and CelB are 1,219 and 1,536 U/mg, respectively. With p-nitrophenyl cellobioside the Vmax values of CelA and CelB are 69.2 and 18.4 U/mg, respectively, while the Km values are 0.97 and 0.3 mM, respectively. The major end products of cellulose hydrolysis, glucose and cellobiose, competitively inhibit CelA, and CelB. The Ki values for CelA are 0.44 M for glucose and 2.5 mM for cellobiose; the Ki values for CelB are 0.2 M for glucose and 1.16 mM for cellobiose. CelB preferentially cleaves larger cellooligomers, producing cellobiose as the end product; it also exhibits significant transglycosylation activity. This enzyme is highly thermostable and has half-lives of 130 min at 106°C and 26 min at 110°C. A single clone encoding the celA and celB genes was identified by screening a T. neapolitana genomic library in Escherichia coli. The celA gene encodes a 257-amino-acid protein, while celB encodes a 274-amino-acid protein. Both proteins belong to family 12 of the glycosyl hydrolases, and the two proteins are 60% similar to each other. Northern blots of T. neapolitana mRNA revealed that celA and celB are monocistronic messages, and both genes are inducible by cellobiose and are repressed by glucose.  相似文献   

3.
4.
Hydrolysis of lactose by hyperthermophilic beta-glycosidases from the archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) was carried out at 70 degrees C in a continuous stirred-tank reactor (CSTR) coupled to a 10-kDa cross-flow ultrafiltration module to recycle the enzyme. Recirculation rates of > or =1 min(-1), reaction of proteins with reducing sugars, and enzyme adsorption onto the membrane are major "operational" factors of enzyme inactivation in the CSTR. They cause the half-life times of SsbetaGly and CelB to be reduced two- and eight-fold, respectively, the average value for both enzymes now being approximately 5 to 7 days. Using lactose at initial concentrations of 45 and 170 g/L, the CSTR was operated at a constant conversion level of approximately 80% for more than 2 weeks without the occurrence of microbial contamination. The productivities for the SsbetaGly-catalyzed conversion of lactose were determined at different dilution rates and initial substrate concentrations, and exceed by a factor of < or =2 those observed with CelB under otherwise identical conditions. This difference reflects the approximately eight-fold stronger product inhibition of CelB by D-glucose. While the maximum total galacto-oligosaccharide production (90-100 mM) at 170 g/L lactose in the CSTR was not different from that in the batch reactor (CelB) or was greater by approximately 25% (SsbetaGly), continuous and batchwise reactions with both enzymes differed markedly with regard to relative proportions of the individual saccharide components present at 80% substrate conversion. The CSTR yielded an up to four-fold greater ratio of disaccharides to trisaccharides concomitant with a 5- to 30-fold larger relative proportion of beta-D-Galp-(1-->3)-D-Glc in the product mixture. The results show that apart from continuous hydrolysis of lactose at 70 degrees C, a CSTR charged with SsbetaGly or CelB and operated at steady-state conditions could be a useful reaction system for the production of galacto-oligosaccharides in which composition is narrower and more easily programmable, in terms of the individual components contained, as compared to the batchwise reaction.  相似文献   

5.
Qiu X  Selinger B  Yanke L  Cheng K 《Gene》2000,245(1):119-126
Two cellulase cDNAs, celB29 and celB2, were isolated from a cDNA library derived from mRNA extracted from the anaerobic fungus, Orpinomyces joyonii strain SG4. The nucleotide sequences of celB2 and celB29 and the primary structures of the proteins encoded by these cDNAs were determined. The larger celB29 cDNA was 1966bp long and encoded a 477 amino acid polypeptide with a molecular weight of 54kDa. Analysis of the 1451bp celB2 cDNA revealed an 1164bp open reading frame coding for a 44kDa protein consisting of 388 amino acids. Both deduced proteins had a high sequence similarity in central regions containing putative catalytic domains. Primary structure analysis revealed that CelB29 contained a Thr/Pro-rich sequence that separated the N-terminal catalytic domain from a C-terminal reiterated region of unknown function. Homology analysis showed that both enzymes belong to glycosyl hydrolase family 5 and were most closely related to endoglucanases from the anaerobic fungi Neocallimastic patriciarum, Neocallimastix frontalis and Orpinomyces sp. The classification of CelB29 and CelB2 as endoglucanases was supported by enzyme assays. The cloned enzymes had high activities towards barley beta-glucan, lichenan and carboxymethylcellulose (CMC), but not Avicel, laminarin, pachyman, xylan and pullulan. In addition, CelB29 and CelB2 showed activity against p-nitrophenyl-beta-D-cellobioside (pNP-G(2)) to p-nitrophenyl-beta-D-cellopentaoside (pNP-G(5)) but not p-nitrophenyl-beta-D-glucopyranoside (pNP-G(1)) with preferential activity against p-nitrophenyl-beta-D-cellotrioside (pNP-G(3)). Based on these results, we proposed that CelB29 and CelB2 are endoglucanases with broad substrate specificities for short- and long-chain beta-1,4-glucans.  相似文献   

6.
We screened for high-activity endoglucanase (EG) as a first step toward the creation of cellulose-assimilating Streptomyces lividans transformants. EGs derived from Thermobifida fusca YX, Tfu0901, and S. lividans, cellulase B (CelB), were successfully expressed. Genes encoding Tfu0901 or CelB were introduced into S. lividans using the integrative vector pTYM18 and the high-copy-number vector pUC702, and EG activity was detected in the supernatant of each transformant. To achieve coexpression of EG and transglutaminase, the transglutaminase gene was introduced into EG-secreting S. lividans using pUC702. S. lividans coexpressing EG and transglutaminase effectively assimilated phosphoric acid swollen cellulose. The yield of Streptomyces cinnamoneus transglutaminase in the culture supernatant was 7.2 mg/L, which was 18 times higher than that of the control strain. To demonstrate the versatility of our system, we also created an EG-producing S. lividans transformant capable of coexpressing endoxylanase. The EG-secreting S. lividans transformants constructed here can be used to produce other useful compounds through cellulose fermentation.  相似文献   

7.
beta-Glycosidase CelB from the hyperthermophilic archaeon Pyrococcus furiosus is a versatile biocatalyst that has been used for the hydrolysis and synthesis of beta-d-glycosidic compounds at high temperatures and in non-conventional solvents. In spite of its outstanding thermal stability, CelB is prone to inactivation in the presence of reducing sugars and through recirculation in loop enzyme reactors. Entrapment into E. coli cells was used here to improve the stability of recombinant CelB under conditions promoting strong inactivation. Glutardialdehyde-mediated protein cross-linking or rigidification of the cell membrane by adding magnesium ions was required to prevent release of CelB from within the cell into the bulk solution. In the presence of 1M glucose or when applying recirculation rates of 2.6 min(-1), the entrapped enzyme was around two-fold more stable at 80 degrees C than free CelB. The significance of the stabilisation was attenuated by the decrease in CelB initial activity which was due to cross-linking and glutardialdehyde concentration-dependent. Entrapment facilitated downstream processing of CelB and biocatalyst recovery in repeated batchwise conversions of lactose at elevated temperatures.  相似文献   

8.
The hyperthermostable beta-glycosidases from the Archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) hydrolyse beta-glycosides of D-glucose or D-galactose with relaxed specificities pertaining to the nature of the leaving group and the glycosidic linkage. To determine how specificity is manifested under conditions of kinetically controlled transgalactosylation, the major transfer products formed during the hydrolysis of lactose by these enzymes have been identified, and their appearance and degradation have been determined in dependence of the degree of substrate conversion. CelB and SsbetaGly show a marked preference for making new beta(1-->3) and beta(1-->6) glycosidic bonds by intermolecular as well as intramolecular transfer reactions. The intramolecular galactosyl transfer of CelB, relative to glycosidic-bond cleavage and release of glucose, is about 2.2 times that of SsbetaGly and yields beta-D-Galp-(1-->6)-D-Glc and beta-D-Galp-(1-->3)-D-Glc in a molar ratio of approximately 1 : 2. The partitioning of galactosylated SsbetaGly between reaction with sugars [kNu (M-1. s-1)] and reaction with water [kwater (s-1)] is about twice that of CelB. It gives a mixture of linear beta-D-glycosides, chiefly trisaccharides at early reaction times, in which the prevailing new glycosidic bonds are beta(1-->6) and beta(1-->3) for the reactions catalysed by SsbetaGly and CelB, respectively. The accumulation of beta-D-Galp-(1-->6)-D-Glc at the end of lactose hydrolysis reflects a 3-10-fold specificity of both enzymes for the hydrolysis of beta(1-->3) over beta(1-->6) linked glucosides. Galactosyl transfer from SsbetaGly or CelB to D-glucose occurs with partitioning ratios, kNu/kwater, which are seven and > 170 times those for the reactions of the galactosylated enzymes with 1-propanol and 2-propanol, respectively. Therefore, the binding interactions with nucleophiles contribute chiefly to formation of new beta-glycosides during lactose conversion. Likewise, noncovalent interactions with the glucose leaving group govern the catalytic efficiencies for the hydrolysis of lactose by both enzymes. They are almost fully expressed in the rate-limiting first-order rate constant for the galactosyl transfer from the substrate to the enzyme and lead to a positive deviation by approximately 2.5 log10 units from structure-reactivity correlations based on the pKa of the leaving group.  相似文献   

9.
Cellulose-binding domains (CBD) play a pivotal role during plant cell wall hydrolysis by cellulases and xylanases from aerobic soil bacteria. Recently we␣have reported the molecular characterisation of a single-domain endoglucanase from Cellvibrio mixtus, suggesting that some cellulases produced by this aerobic bacterium preferentially hydrolyse soluble cellulosic substrates. Here we describe the complete nucleotide sequence of a second cellulase gene, celB, from the soil bacterium C.mixtus. It revealed an open reading frame of 1863 bp that encoded a polypeptide, defined as cellulase B (CelB), with a predicted M r of 66 039. CelB contained a glycosyl hydrolase family 5 catalytic domain at its N terminus followed by two repeated domains, which exhibited sequence identity with type VI CBD previously found in xylanases. Full-length CelB bound to cellulose while catalytically active truncated cellulase derivatives were unable to bind the polysaccharide, confirming that CelB is a modular enzyme and that the type VI CBD homologues were functional. Analysis of the biochemical properties of CelB revealed that the enzyme hydrolyses a range of cellulosic substrates, although it was unable to depolymerise Avicel. We propose that type VI CBD, usually found in xylanases, provide an additional mechanism by which cellulases can accumulate on the surface of the plant cell wall, although they do not potentiate cellulase activity directly. These results demonstrate that C. mixtus, in common with other aerobic bacteria, is able to produce cellulases that are directed to the hydrolysis of cellulose in its natural environment, the plant cell wall. Received: 6 October 1997 / Received revision: 22 December 1997 / Accepted: 2 January 1998  相似文献   

10.
The substrate specificity of the beta-glucosidase (CelB) from the hyperthermophilic archaeon Pyrococcus furiosus, a family 1 glycosyl hydrolase, has been studied at a molecular level. Following crystallization and X-ray diffraction of this enzyme, a 3.3 A resolution structural model has been obtained by molecular replacement. CelB shows a homo-tetramer configuration, with subunits having a typical (betaalpha)(8)-barrel fold. Its active site has been compared to the one of the previously determined 6-phospho-beta-glycosidase (LacG) from the mesophilic bacterium Lactococcus lactis. The overall design of the substrate binding pocket is very well conserved, with the exception of three residues that have been identified as a phosphate binding site in LacG. To verify the structural model and alter its substrate specificity, these three residues have been introduced at the corresponding positions in CelB (E417S, M424K, F426Y) in different combinations: single, double, and triple mutants. Characterization of the purified mutant CelB enzyme revealed that F426Y resulted in an increased affinity for galactosides, whereas M424K gave rise to a shifted pH optimum (from 5.0 to 6.0). Analysis of E417S revealed a 5-fold and a 3-fold increase of the efficiency of hydrolyzing o-nitrophenol-beta-D-galactopyranoside-6-phosphate, in the single and triple mutants, respectively. In contrast, their activity on nonphosphorylated sugars was largely reduced (30-300-fold). The residue at position E417 in CelB seems to be the determining factor for the difference in substrate specificity between the two types of family 1 glycosidases.  相似文献   

11.
The transglucosylation reaction catalyzed by wild-type beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus and active site mutants (M424K, F426Y, M424K/F426Y) was studied. The conversion of pentyl-beta-glucoside to hexyl-beta-glucoside in hexanol was used as a model transglucosylation reaction. Hydrolysis to glucose was a side reaction. The selectivity towards transglucosylation was quantified by the S value defined as follows: S = r(S) x a(W)/r(H) x a(hex) where r(S) and r(H) are the initial rates of transglucosylation and hydrolysis and a(w) and a(hex) are the thermodynamic activities of water and hexanol. The activity (rates of hydrolysis and transglucosylation) and the selectivity (S value) were measured as a function of pentyl-beta-glucoside concentration (5-240 mM), water content (1-100% v/v), and temperature (50-95 degrees C). All mutants had lower activity than the wild-type enzyme, but they had higher selectivity, which means that they provided a higher ratio of transglucosylation product to hydrolysis product. The largest increase in S-value (2.6 fold) was obtained by the F426Y mutant, which resulted in increased hexyl-beta-glucoside yield from 56% to 69%. In addition, the F426Y enzyme had higher selectivity over the wide range of temperatures tested. The activity of CelB wild-type and CelB F426Y increased as a function of water activity (a(w)), and complete activation by the water was obtained in a two-phase system with 20% water phase. In contrast to CelB wild-type, the F426Y mutant had transferase activity as low as a(w) = 0.29. Surprisingly, the S value increased with increasing water activity up to a(w) = 0.92. At still higher water content the S value decreased.  相似文献   

12.
During lactose conversion at 70 degrees C, when catalyzed by beta-glycosidases from the archea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion-exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsbetaGly. However, the product spectrum of SsbetaGly is richer in trisaccharides, and this agrees with results obtained from the steady-state kinetics analyses of galactosyl transfer catalyzed by SsbetaGly and CelB. The major transgalactosylation products of SsbetaGly and CelB have been identified. They are beta-D-Galp-(1-->3)-Glc and beta-D-Galp-(1-->6)-Glc, and beta-D-Galp-(1-->3)-lactose and beta-D-Galp-(1-->6)-lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate beta(1-->6)-linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable beta-glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization.  相似文献   

13.
Alkaliphilic and halophilic Bacillus sp. BG-CS10 was isolated from Zabuye Salt Lake, Tibet. The gene celB, encoding a halophilic cellulase was identified from the genomic library of BG-CS10. CelB belongs to the cellulase superfamily and DUF291 superfamily, with an unknown function domain and less than 58% identity to other cellulases in GenBank. The purified recombinant protein (molecular weight: 62 kDa) can hydrolyze soluble cellulose substrates containing beta-1,4-linkages, such as carboxylmethyl cellulose and konjac glucomannan, but has no exoglucanase and β-glucosidase activities. Thus, CelB is a cellulase with an endo mode of action and glucomannanase activity. Interestingly, the enzyme activity was increased approximately tenfold with 2.5 M NaCl or 3 M KCl. Furthermore, the optimal temperatures were 55°C with 2.5 M NaCl and 35°C without NaCl, respectively. This indicates that NaCl can improve enzyme thermostability. The K m and k cat values of CelB for CMC with 2.5 M NaCl were 3.18 mg mL−1 and 26 s−1, while the K m and k cat values of CelB without NaCl were 6.6 mg mL−1 and 2.1 s−1. Thus, this thermo-stable, salt and pH-tolerant cellulase is a promising candidate for industrial applications, and provides a new model to study salt effects on the structure of protein.  相似文献   

14.
The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the μ-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the μ-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the μ-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens.  相似文献   

15.
The gene celB encoding an endoglucanase from Paenibacillus sp. BP-23 was cloned and expressed in Escherichia coli. The nucleotide sequence of a 4161 bp DNA fragment containing the celB gene was determined, revealing an open reading frame of 2991 nucleotides that encodes a protein of 106,927 Da. Comparison of the deduced amino acid sequence of endoglucanase B with known β-glycanase sequences showed that the encoded enzyme is a modular protein and exhibits high homology to enzymes belonging to family 9 cellulases. The celB gene product synthesized in E. coli showed high activity on carboxymethyl cellulose and lichenan while low activity was found on Avicel. Activity was enhanced in the presence of 10 mM Ca2+ and showed its maximum at 53 °C and pH 5.5. The effect of the cloned enzyme in modifying the physical properties of pulp and paper from Eucalyptus was tested (CelB treatment). An increase in mechanical strength of paper and a decrease in pulp dewatering properties were found, indicating that CelB treatment can be considered as a biorefining. Treatment with CelB gave rise to an improvement in paper strength similar to that obtained with 1,000 revolutions increase in mechanical refining. Comparison with the performances of recently developed endoglucanase A from the same strain and with a commercial cellulase showed that CelB produced the highest refining effect. Received: 25 February 2000 / Received revision: 4 July 2000 / Accepted: 9 July 2000  相似文献   

16.
Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type beta-glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type beta-mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme activity, and substrate specificity were determined. The oligosaccharide synthesis was carried out in aqueous solution at 95 degrees C at different lactose concentrations and pH values. The results showed enhanced synthetic properties of the CelB mutant enzymes. An exchange of one phenylalanine to tyrosine (F426Y) increased the oligosaccharide yield (45%) compared with the wild-type CelB (40%). Incorporation of a positively charged group in the active site (M424K) increased the pH optimum of transglycosylation reaction of CelB. The double mutant, M424K/F426Y, showed much better transglycosylation properties at low (10-20%) lactose concentrations compared to the wild-type. At a lactose concentration of 10%, the oligosaccharide yield for the mutant was 40% compared to 18% for the wild-type. At optimal reaction conditions, a higher ratio of tetrasaccharides to trisaccharides was obtained with the double mutant (0.42, 10% lactose) compared to the wild-type (0.19, 70% lactose). At a lactose concentration as low as 10%, only trisaccharides were synthesized by CelB wild-type. The beta-mannosidase BmnA from P. furiosus showed both beta-glucosidase and beta-galactosidase activity and in the transglycosylation of lactose the maximal oligosaccharide yield of BmnA was 44%. The oligosaccharide yields obtained in this study are high compared to those reported with other transglycosylating beta-glycosidases in oligosaccharide synthesis from lactose.  相似文献   

17.
Sβgly and CelB are well-studied hyperthermophilic glycosyl hydrolases, isolated from the Archaea Sulfolobus solfataricus and Pyrococcus furiosus, respectively. Previous studies revealed that the two enzymes are phylogenetically related; they are very active and stable at high temperatures, and their overall three-dimensional structure is very well conserved. To acquire insight in the molecular determinants of thermostability and thermoactivity of these enzymes, we have performed a detailed comparison, under identical conditions, of enzymological and biochemical parameters of Sβgly and CelB, and we have probed the basis of their stability by perturbations induced by temperature, pH, ionic strength, and detergents. The major result of the present study is that, although the two enzymes are remarkably similar with respect to kinetic parameters, substrate specificity, and reaction mechanism, they are strikingly different in stability to the different physical or chemical perturbations induced. These results provide useful information for the design of further experiments aimed at understanding the structure–function relationships in these enzymes. Received: May 20, 1999 / Accepted: January 10, 2000  相似文献   

18.
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3′OH-dependent trailer binding/protection and a UUU-3′OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3′OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.  相似文献   

19.
Two endo-1,4-β-glucanase genes, designated celA and celB, from a shoyu koji mold Aspergillus oryzae KBN616, were cloned and characterized. The celA gene comprised 877 bp with two introns. The CelA protein consisted of 239 amino acids and was assigned to the cellulase family H. The celB gene comprised 1248 bp with no introns. The CelB protein consisted of 416 amino acids and was assigned to the cellulase family C. Both genes were overexpressed under the promoter of the A. oryzae taka-amylase A gene for purification and enzymatic characterization of CelA and CelB. CelA had a molecular mass of 31 kDa, a pH optimum of 5.0 and temperature optimum of 55 °C, whereas CelB had a molecular mass of 53 kDa, a pH optimum of 4.0 and temperature optimum of 45 °C. Received: 3 July 1996 / Accepted: 15 July 1996  相似文献   

20.
The transfer of a galactosyl group from an enzyme to a number of neutral primary alcohols, phenol and azide has been studied during the reactions at 80 degrees C of thermostable beta-glycosidases from Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) with 2-nitrophenyl beta-D-galactopyranoside or lactose (4-O-beta-D-galactopyranosyl D-glucopyranose) as substrates. The rate constant ratios, k(Nu)/k(water), for partitioning of the galactosylated enzyme intermediates between reaction with nucleophiles (k(Nu), M(-1) s(-1)) and water (k(water), s(-1)) have been determined from the difference in the initial velocities of the formation of 2-nitrophenol or D-glucose, and D-galactose. The results show that hydrophobic bonding interactions contribute approximately 8 kJ mol(-1) to the stabilization of the transition state for the reaction of galactosylated enzyme intermediates of Ss beta Gly and CelB with 1-butanol, compared to the transition state for the enzymatic reaction with methanol. The leaving group/nucleophile binding sites of Ss beta Gly and CelB appear about 0.8 times as hydrophobic as n-octanol. Values of k(Nu)/k(water) for reactions of galactosylated Ss beta Gly with ethanol and substituted derivatives of ethanol show no clear dependence on the pK(a) of the primary hydroxy group of these nucleophiles in the pK(a) range 12.4-16.0. The binding of phenol with the galactosylated enzyme intermediates of Ss beta Gly and CelB occurs in a form that is mainly nonproductive pertaining to beta-galactoside synthesis. Neither enzyme catalyzes galactosyl transfer to azide ion. A model is proposed for the interaction of neutral nucleophiles at an extended acceptor site of the galactosylated enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号