首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylamide gel electrophoresis of isolated cytoplasmic and chloroplast ribosomal ribonucleic acid species during the synchronous vegetative cell cycle of the eukaryote Chlamydomonas reinhardtii suggests that a separate control of cytoplasmic and chloroplast rRNA might exist. It was found that the amount of cytoplasmic rRNA linearly increased during the entire G1 phase of the cell cycle, whereas chloroplast rRNA accumulated only through 70% of the G1 period. The amount of cytoplasmic rRNA per mother cell remained constant during nuclear DNA synthesis but a gradual loss of chloroplast rRNA was noted at this time. A significant decline in all four rRNA species occurred at the time of cell division.  相似文献   

2.
3.
Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.  相似文献   

4.
Over half of the chloroplast ribosomes isolated from growing cultures of Chlamydomonas reinhardtii are bound to chloroplast thylakoid membranes if completion of nascent polypeptide chains is prevented by chloramphenicol. The free chloroplast ribosomes are recovered in homogenate supernatants, and presumably originate from the chloroplast stroma. Only about 10% of these free chloroplast ribosomes are polyribosomes, even under conditions when 70% of free cytoplasm ribosomes are recovered as polyribosomes. The nonionic detergent Nonidet P-40 liberates atypical polyribosomes (Type I), from membranes, which require both ribonuclease and proteases for complete conversion to monomeric ribosomes. Thus Type I particles are held together by mRNA but are also held together by peptide bonds. These Type I polyribosomes probably are not bound to intact membrane, but might be bound to some protein-containing sub-membrane particle. The Type I polyribosomes are dissociated to ribosomal subunits by puromycin and high salt, and contained 0.2 to 1 nascent chain per ribosome. If membranes are treated with Nonidet and proteases at the same time, polyribosomes which are digested to monomeric ribosomes by ribonuclease alone (Type II) are obtained. Type II polyribosomes are smaller than Type I, and probably represent the true size distribution of polyribosomes on the membranes. At least 50% of the membrane-bound ribosomes are polyribosomes, since that much membrane bound chloroplast RNA is recovered as Type I or Type II polyribosomes.  相似文献   

5.
The identity of peaks generated by chloroplast ribosomes of Chlamydomonas reinhardtii were determined by zone velocity sedimentation on sucrose density gradients, and analysis of distribution of ribosomal RNAs in the gradients. The sedimentagion coefficient of the principal peak was 66-70 S (usually 69 S), in good agreement with previously reported values for chloroplast ribosomes of C. reinhardtii, and other organisms. The fast sedimenting side of the 69 S peak contained an excess of chloroplast large subunit. When ribosome dissociation was prevented by sedimentation at low velocity, by aldehyde fixation, or by the presence of nascent polypeptide chains, the principal peak had a sedimentation coefficient of about 75 S. Thus the 69 S peak was an artifact caused by dissociation during centrifugation. Peaks that contained chloroplast ribosomal RNAs were also observed at '60 S' and '45 S' when chloroplast ribosomes were centrifuged unfixed at high velocity. The amounts of '60 S' and '45 S' components were decreased by centrifugation at low speed, or fixation, but sedimentation coefficients remained unchanged. The '60 S', and '45 S' components were identified as large, and small subunits of chloroplast ribosomes, respectively. The artifacts produced by centrifugation of chloroplast ribosomes, are similar to the artifacts produced by centrifuging ribosomes of Escherichia coli. Similar explanations appear to apply to both. We concluded that the 69 S chloroplast ribosome peak occurs because of dissociation of 'tight' couples, and incomplete separation of subunits. Subunit peaks (60 S and 45 S) arise from free subunits, and/or from dissociation of 'loose' couples.  相似文献   

6.
The synthesis of the major chloroplast membrane polypeptides has been studied during synchronous growth of Chlamydomonas reinhardtii. Under these conditions, chlorophyll is synthesized during the latter part of the light period and cell division takes place during the dark period. The profile of the chloroplast membrane polypeptides of C. reinhardtii has been well characterized and shown to contain two major classes by size (Hoober, J. 1970. J. Biol. Chem. 245:4327). Polypeptides of group I have a mol wt range of 50,000–55,000 daltons. The second region consists of at least three polypeptide groups, IIa, IIb, and IIc, having mol wt of 40,000, 31,000, and 27,000 daltons, respectively. The synthesis of these polypeptides has been measured using a double-labeling technique and a computer-aided statistical analysis. The rate of labeling of group I polypeptides is highest during the early light period and decreases after 6 h of growth. Group IIa is labeled from the beginning of the light period, but little synthesis of IIb occurs before 3 h, and significant amounts of label are not found in IIc before 5 h of growth. After approximately 8 h of light, groups IIb and IIc are synthesized at rates significantly greater than those of the other membrane polypeptides. The synthesis of the major polypeptide groups ceases in the dark. We conclude that the biosynthesis of the chloroplast membranes is a sequential or stepwise process.  相似文献   

7.
8.
The effects on the stringent control of ribosomal ribonculeic acid synthesis of the removal of cell wall, cold-shock treatment of cells, LiCl treatment of toluene-treated cells, and hypotonic treatment of spheroplasts were examined using Escherichia coli rel+ cells. Neither the removal of cell wall with penicillin or lysozyme nor the cold-shock treatment of the cells had an effect on the stringent control. The control mechanism, however, disappeared after the LiCl treatment of the toluene-treated cells, with the release of some protein component(s), possibly from the cytoplasmic membrane. The hypotonic and other treatments of spheroplasts, which disrupt the cytoplasmic membrane, also led to the abolishment of the control mechanism. These results suggested that the operation of the stringent control of ribosomal ribonucleic acid synthesis requires the cytoplasmic membrane, in which some proteins labile with LiCl treatment are embedded.  相似文献   

9.
10.
There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage‐infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl‐1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.  相似文献   

11.
We have examined DNA replication in Chlamydomonas reinhardtii chloroplasts in vivo when chloroplast type II topoisomerases are inactivated with sublethal doses of novobiocin. DNA replication is at first inhibited under these conditions. However, after a delay of several hours, chloroplast chromosomes initiate a novobiocin-insensitive mode of DNA replication. This replication starts preferentially near a hotspot of recombination in the large inverted repeats, instead of from the normal chloroplast origins, oriA and oriB. It replicates one, but not the other single-copy region of the chloroplast chromosome. We speculate that novobiocin-insensitive DNA replication in chloroplasts requires recombination in this preferred initiation region.  相似文献   

12.
Cell survival depends on the cell's ability to acclimate to phosphorus (P) limitation. We studied the chloroplast ribonuclease polynucleotide phosphorylase (PNPase), which consumes and generates phosphate, by comparing wild-type Chlamydomonas reinhardtii cells with strains with reduced PNPase expression. In the wild type, chloroplast RNA (cpRNA) accumulates under P limitation, correlating with reduced PNPase expression. PNPase-deficient strains do not exhibit cpRNA variation under these conditions, suggesting that in the wild type PNPase limits cpRNA accumulation under P stress. PNPase levels appear to be mediated by the P response regulator PHOSPHORUS STARVATION RESPONSE1 (PSR1), because in psr1 mutant cells, cpRNA declines under P limitation and PNPase expression is not reduced. PNPase-deficient cells begin to lose viability after 24 h of P depletion, suggesting that PNPase is important for cellular acclimation. PNPase-deficient strains do not have enhanced sensitivity to other physiological or nutrient stresses, and their RNA and cell growth phenotypes are not observed under P stress with phosphite, a phosphate analog that blocks the stress signal. In contrast with RNA metabolism, chloroplast DNA (cpDNA) levels declined under P deprivation, suggesting that P mobilization occurs from DNA rather than RNA. This unusual phenomenon, which is phosphite- and PSR1-insensitive, may have evolved as a result of the polyploid nature of cpDNA and the requirement of P for cpRNA degradation by PNPase.  相似文献   

13.
The chloroplasts ofChlamydomonas reinhardtii were transformed using a vector (paadAGUS4.1) that contained a spectinomycin-resistance gene (aadA) as a selectable gene, and bacterialuidA (GUS) as a reporter gene, and pea 4.1 kb D-loop containing sequence. The vector was introduced into the alga through particle gun bombardment. The transformed colonies were screened for the presence of foreign genes by Southern hybridization using GUS,aadA and 4.1 pea Ori probes. Expression ofaadA and GUS genes was detected in all colonies that were grown on spectinomycin. A detailed restriction analysis followed by southern hybridization of total genomic DNA using pea 4.1 kb D-loop as probe indicated that the D-loop sequence can serve in site-specific integration of foreign DNA due to high homology. Restriction analysis of different colonies showed that the foreign DNA was probably present in a mixture population of autonomous segment and integrated in the native chloroplast genome.  相似文献   

14.
Carbonic anhydrases (CA) are zinc-containing metalloenzymes that catalyze the reversible hydration of CO2. The three evolutionarily unrelated families of CAs are designated alpha-, beta-, and gamma-CA. Aquatic photosynthetic organisms have evolved different forms of CO2 concentrating mechanisms (CCMs) to aid Rubisco in capturing CO2 from the surrounding environment. One aspect of all CCMs is the critical roles played by various specially localized extracellular and intracellular CAs. Five CAs have previously been identified in Chlamydomonas reinhardtii, a green alga with a well-studied CCM. Here we identify a sixth gene encoding a beta-type CA. This new beta-CA, designated Cah6, is distinct from the two mitochondrial beta-CAs in C. reinhardtii. Nucleotide sequence data show that the Cah6 cDNA contains an open reading frame encoding a polypeptide of 264 amino acids with a leader sequence likely targeting the protein to the chloroplast stroma. We have fused the Cah6 open reading frame to the coding sequence of maltose-binding protein in a pMal expression vector. The purified recombinant fusion protein is active and was used to partially characterize the Cah6 protein. The purified recombinant fusion protein was cleaved with protease Factor Xa to separate Cah6 from the maltose-binding protein and the purified Cah6 protein was used to raise an antibody. Western blots, immunolocalization studies, and northern blots collectively indicated that Cah6 is constitutively expressed in the stroma of chloroplasts. A possible role for Cah6 in the CCM of C. reinhardtii is proposed.  相似文献   

15.
衣藻叶绿体分裂基因CrFtsZ1在E.coli中的表达   总被引:1,自引:0,他引:1  
FtsZ蛋白在细菌的分裂中起着重要作用,能够在分裂位点形成一个环状结构而控制细菌的分裂过程。细胞内FtsZ蛋白浓度的明显降低或异常升高均可阻断正常的细胞分裂过程进而导致丝状菌体的产生。为了研究衣藻叶绿体分裂基因ftsZ的功能,构建了衣藻CrFtsZ1的原核表达重组质粒。试验结果表明,衣藻ftsZ的表达严重影响了大肠杆菌的分裂,初步证明衣藻FtsZ蛋白不仅与E.coli FtsZ蛋白在序列上相似,而且也有着相似的功能,同时这一结果也为真核细胞中质体的内共生起源提供了直接的证据。  相似文献   

16.
17.
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.  相似文献   

18.
19.
We have isolated nonphotosynthetic (acetate-requiring) mutants with physical alterations in chloroplast DNA following growth of haploid cells in the chloroplast specific mutagen 5-fluorodeoxyuridine (FdUrd) or treatment of FdUrd-grown diploid cells with X rays. About one-third of the nonphotosynthetic mutations resulting from FdUrd treatment alone show simple deletions. All eight of the mutants examined so far which were obtained with FdUrd plus X rays have deletions that are accompanied by rearrangements, including inversions or duplications. All the alterations extend into one of the two inverted repeat regions of the chloroplast genome which contain the ribosomal RNA cistrons. However, Southern hybridization experiments reveal that the rRNA cistrons are not deleted but instead are contained in new fragments. The relocated rRNA cistrons appear to be functional, since the mutants have normal levels of chloroplast ribosomes. In most cases the deletions and rearrangements are symmetrical and affect both inverted repeats in a similar fashion. An exception is the mutant ac-u-c-2–43, which lacks one inverted repeat region almost completely, including an entire set of rRNA genes. Three additional mutants, which fail to recombine with ac-u-c-2–43 to give photosynthetically competent cells, have smaller deletions in the same region of the genome. These physical mapping studies have allowed us to place the ac-u-c locus itself in a region of unique sequence DNA in a fragment, Ba10, which also includes the right-hand end of one inverted repeat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号