首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
During replication arrest, the DNA replication checkpoint plays a crucial role in the stabilization of the replisome at stalled forks, thus preventing the collapse of active forks and the formation of aberrant DNA structures. How this checkpoint acts to preserve the integrity of replication structures at stalled fork is poorly understood. In Schizosaccharomyces pombe, the DNA replication checkpoint kinase Cds1 negatively regulates the structure-specific endonuclease Mus81/Eme1 to preserve genomic integrity when replication is perturbed. Here, we report that, in response to hydroxyurea (HU) treatment, the replication checkpoint prevents S-phase-specific DNA breakage resulting from Mus81 nuclease activity. However, loss of Mus81 regulation by Cds1 is not sufficient to produce HU-induced DNA breaks. Our results suggest that unscheduled cleavage of stalled forks by Mus81 is permitted when the replisome is not stabilized by the replication checkpoint. We also show that HU-induced DNA breaks are partially dependent on the Rqh1 helicase, the fission yeast homologue of BLM, but are independent of its helicase activity. This suggests that efficient cleavage of stalled forks by Mus81 requires Rqh1. Finally, we identified an interplay between Mus81 activity at stalled forks and the Chk1-dependent DNA damage checkpoint during S-phase when replication forks have collapsed.  相似文献   

2.
Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor   总被引:9,自引:0,他引:9  
Together, DNA repair and checkpoint responses ensure the integrity of the genome. Coordination of cell cycle checkpoints and DNA repair are especially important following genotoxic radiation or chemotherapy, during which unusually high loads of DNA damage are sustained. In mammalian cells, the checkpoint kinase, Cds1 (also known as Chk2) is activated by ATM in response to DNA damage. The role of Cds1 as a checkpoint kinase depends on its ability to phosphorylate cell cycle regulators such p53, Cdc25 and Brca1. A role for Cds1 in repair is suggested by the finding that it interacts with the Holliday junction resolving activity Mus81. This review focuses on the many questions generated by recent progress in understanding the function and regulation of human Cds1.  相似文献   

3.
The replication checkpoint is a dedicated sensor-response system activated by impeded replication forks. It stabilizes stalled forks and arrests division, thereby preserving genome integrity and promoting cell survival. In budding yeast, Tof1 is thought to act as a specific mediator of the replication checkpoint signal that activates the effector kinase Rad53. Here we report studies of fission yeast Swi1, a Tof1-related protein required for a programmed fork-pausing event necessary for mating type switching. Our studies have shown that Swi1 is vital for proficient activation of the Rad53-like checkpoint kinase Cds1. Together they are required to prevent fork collapse in the ribosomal DNA repeats, and they also prevent irreversible fork arrest at a newly identified hydroxyurea pause site. Swi1 also has Cds1-independent functions. Rad22 DNA repair foci form during S phase in swi1 mutants and to a lesser extent in cds1 mutants, indicative of fork collapse. Mus81, a DNA endonuclease required for recovery from collapsed forks, is vital in swi1 but not cds1 mutants. Swi1 is recruited to chromatin during S phase. We propose that Swi1 stabilizes replication forks in a configuration that is recognized by replication checkpoint sensors.  相似文献   

4.
The S-phase DNA damage checkpoint slows the rate of DNA synthesis in response to damage during replication. In the fission yeast Schizosaccharomyces pombe, Cds1, the S-phase-specific checkpoint effector kinase, is required for checkpoint signaling and replication slowing; upon treatment with the alkylating agent methyl methane sulfonate, cds1Δ mutants display a complete checkpoint defect. We have identified proteins downstream of Cds1 required for checkpoint-dependant slowing, including the structure-specific endonuclease Mus81 and the helicase Rqh1, which are implicated in replication fork stability and the negative regulation of recombination. Removing Rhp51, the Rad51 recombinase homologue, suppresses the slowing defect of rqh1Δ mutants, but not that of mus81Δ mutant, defining an epistatic pathway in which mus81 is epistatic to rhp51 and rhp51 is epistatic to rqh1. We propose that restraining recombination is required for the slowing of replication in response to DNA damage.  相似文献   

5.
Human Mus81-associated endonuclease cleaves Holliday junctions in vitro.   总被引:1,自引:0,他引:1  
Mus81, a protein with homology to the XPF subunit of the ERCC1-XPF endonuclease, is important for replicational stress tolerance in both budding and fission yeast. Human Mus81 has associated endonuclease activity against structure-specific oligonucleotide substrates, including synthetic Holliday junctions. Mus81-associated endonuclease resolves Holliday junctions into linear duplexes by cutting across the junction exclusively on strands of like polarity. In addition, Mus81 protein abundance increases in cells following exposure to agents that block DNA replication. Taken together, these findings suggest a role for Mus81 in resolving Holliday junctions that arise when DNA replication is blocked by damage or by nucleotide depletion. Mus81 is not related by sequence to previously characterized Holliday junction resolving enzymes, and it has distinct enzymatic properties that suggest it uses a novel enzymatic strategy to cleave Holliday junctions.  相似文献   

6.
The Mus81-Eme1 structure-specific endonuclease is crucial for the processing of DNA recombination and late replication intermediates. In fission yeast, stimulation of Mus81-Eme1 in response to DNA damage at the G2/M transition relies on Cdc2CDK1 and DNA damage checkpoint-dependent phosphorylation of Eme1 and is critical for chromosome stability in absence of the Rqh1BLM helicase. Here we identify Rad3ATR checkpoint kinase consensus phosphorylation sites and two SUMO interacting motifs (SIM) within a short N-terminal domain of Eme1 that is required for cell survival in absence of Rqh1BLM. We show that direct phosphorylation of Eme1 by Rad3ATR is essential for catalytic stimulation of Mus81-Eme1. Chk1-mediated phosphorylation also contributes to the stimulation of Mus81-Eme1 when combined with phosphorylation of Eme1 by Rad3ATR. Both Rad3ATR- and Chk1-mediated phosphorylation of Eme1 as well as the SIMs are critical for cell fitness in absence of Rqh1BLM and abrogating bimodal phosphorylation of Eme1 along with mutating the SIMs is incompatible with rqh1Δ cell viability. Our findings unravel an elaborate regulatory network that relies on the poorly structured N-terminal domain of Eme1 and which is essential for the vital functions Mus81-Eme1 fulfills in absence of Rqh1BLM.  相似文献   

7.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

8.
Repair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible for producing these intermediates are unknown. Here we show that Mus81, a component of the Mus81-Eme1 structure-specific endonuclease, is involved in generating the ICL-induced DSBs in mouse embryonic stem (ES) cells in S phase. Given the DNA junction cleavage specificity of Mus81-Eme1 in vitro, DNA damage-stalled replication forks are suitable in vivo substrates. Interestingly, generation of DSBs from replication forks stalled due to DNA damage that affects only one of the two DNA strands did not require Mus81. Furthermore, in addition to a physical interaction between Mus81 and the homologous recombination protein Rad54, we show that Mus81(-/-) Rad54(-/-) ES cells were as hypersensitive to ICL agents as Mus81(-/-) cells. We propose that Mus81-Eme1- and Rad54-mediated homologous recombination are involved in the same DNA replication-dependent ICL repair pathway.  相似文献   

9.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

10.
Structure-specific nucleases of the XPF/Mus81 family function in several DNA recombination and repair pathways in eukaryotes, cleaving a variety of flap and branched DNA substrates. Mus81 and XPF are clearly related evolutionarily but differ markedly in their substrate specificity and protein partners. We demonstrate that the XPF endonuclease from Sulfolobus solfataricus, which is dependent on the sliding clamp proliferating cell nuclear antigen for activity, represents an ancestral form of the XPF/Mus81 family, with key properties in common with both enzymes. The archaeal XPF has a domain organization and sequence preference very similar to eukaryal XPF-ERCC1. However, the archaeal enzyme has a pronounced preference for Mus81-type substrates such as D loops, nicked four-way junctions, and 3' flaps. These all have in common a 5'-DNA end next to the cleavage site. The availability of the sliding clamp proliferating cell nuclear antigen may dictate the activity of Sulfolobus XPF in vivo.  相似文献   

11.
In fission yeast, the replication checkpoint is enforced by the kinase Cds1 (human Chk2), which regulates both cell cycle progression and DNA repair factors to ensure that the genome is faithfully duplicated prior to mitosis. Cds1 contains a forkhead-associated domain that mediates its interaction with phosphorylated residues in target proteins. One target of Cds1 is the essential nuclear protein Rad60, which contains the unique structural feature of tandem SUMO homology domains at its C terminus. Hypomorphic mutants of Rad60 cause profound defects in DNA repair and replication stress tolerance. To explore the physiological significance of the Cds1-Rad60 interaction, we have examined the phosphorylation of Rad60 by Cds1 in vitro and the in vivo phosphorylation of Rad60 in response to replication blocks. We find that the N terminus but not the SUMO-like domain of Rad60 is phosphorylated in both conditions. Three important Rad60 phosphorylation sites were identified: Thr(72), Ser(32), and Ser(34). Rad60 Thr(72) mediates the Cds1-Rad60 interaction and is required for the Cds1-dependent phosphorylation of Rad60 in response to replication arrest. Phosphorylation of Rad60 Ser(32) and Ser(34) in a putative SUMO-binding motif is critical for the survival of replication stress. In addition, mutation of Rad60 Ser(32) and Ser(34) to alanine is lethal in cells deleted for the RecQ DNA helicase Rqh1. Finally, we find that Rad60 self-associates via its C-terminal SUMO-like domain and putative SUMO-binding motifs.  相似文献   

12.
The protein kinase Cds1 is an effector of the replication checkpoint in the fission yeast Schizosaccharomyces pombe. Cds1 is required to stabilize stalled replication forks, and it helps to prevent the onset of mitosis until the genome is fully replicated. Mrc1 (mediator of the replication checkpoint-1) and Rad3-Rad26 kinase are required for Cds1 activation, but exactly how Mrc1 mediates Cds1 activation is unknown. Here we show that Mrc1 is required for the initial threonine 11 phosphorylation of Cds1 by Rad3-Rad26. Mrc1 specifically interacts with the forkhead-associated (FHA) domain of Cds1 in yeast two-hybrid assays. Mutations in the FHA domain that abolish this interaction also eliminate Thr-11 phosphorylation of Cds1. Weak Thr-11 phosphorylation of a "kinase-dead" mutant of Cds1 is rescued by co-expression of wild type Cds1. The requirement for Mrc1 in the replication checkpoint can be partially eliminated by expression of a Rad26-Cds1 fusion protein. These findings suggest that recognition of Mrc1 by the FHA domain of Cds1 serves to recruit Cds1 to Rad3-Rad26. This interaction mediates the initial Thr-11 phosphorylation of Cds1 by Rad3-Rad26 with subsequent intermolecular phosphorylation events leading to full activation of Cds1.  相似文献   

13.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.  相似文献   

14.
15.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.Key words: Mek1, meiotic recombination, phosphorylation, Rdh54, Mus81  相似文献   

16.
In the fission yeast Schizosaccharomyces pombe, the protein kinase Cds1 is activated by the S-M replication checkpoint that prevents mitosis when DNA is incompletely replicated. Cds1 is proposed to regulate Wee1 and Mik1, two tyrosine kinases that inhibit the mitotic kinase Cdc2. Here, we present evidence from in vivo and in vitro studies, which indicates that Cds1 also inhibits Cdc25, the phosphatase that activates Cdc2. In an in vivo assay that measures the rate at which Cdc25 catalyzes mitosis, Cds1 contributed to a mitotic delay imposed by the S-M replication checkpoint. Cds1 also inhibited Cdc25-dependent activation of Cdc2 in vitro. Chk1, a protein kinase that is required for the G2-M damage checkpoint that prevents mitosis while DNA is being repaired, also inhibited Cdc25 in the in vitro assay. In vitro, Cds1 and Chk1 phosphorylated Cdc25 predominantly on serine-99. The Cdc25 alanine-99 mutation partially impaired the S-M replication and G2-M damage checkpoints in vivo. Thus, Cds1 and Chk1 seem to act in different checkpoint responses to regulate Cdc25 by similar mechanisms.  相似文献   

17.
Fission yeast Cds1 is phosphorylated and activated when DNA replication is interrupted by nucleotide starvation or DNA damage. Cds1 enforces the S-M checkpoint that couples mitosis (M) to the completion of DNA synthesis (S). Cds1 also controls replicational stress tolerance mechanisms. Cds1 is regulated by a group of proteins that includes Rad3, a kinase related to human checkpoint kinase ATM (ataxia telangiectasia mutated). ATM phosphorylates serine or threonine followed by glutamine (SQ or TQ). Here we show that in vitro, Rad3 and ATM phosphorylate the N-terminal domain of Cds1 at the motif T(11)Q(12). Substitution of threonine-11 with alanine (T11A) abolished Cds1 activation that occurs when DNA replication is inhibited by hydroxyurea (HU) treatment. The cds1-T11A mutant was profoundly sensitive to HU, although not quite as sensitive as a cds1(-) null mutant. Cds1(T11A) was unable to enforce the S-M checkpoint. These results strongly suggest that Rad3-dependent phosphorylation of Cds1 at threonine-11 is required for Cds1 activation and function.  相似文献   

18.
Mus81-Eme1 are essential components of a Holliday junction resolvase.   总被引:22,自引:0,他引:22  
Mus81, a fission yeast protein related to the XPF subunit of ERCC1-XPF nucleotide excision repair endonuclease, is essential for meiosis and important for coping with stalled replication forks. These processes require resolution of X-shaped DNA structures known as Holliday junctions. We report that Mus81 and an associated protein Eme1 are components of an endonuclease that resolves Holliday junctions into linear duplex products. Mus81 and Eme1 are required during meiosis at a late step of meiotic recombination. The mus81 meiotic defect is rescued by expression of a bacterial Holliday junction resolvase. These findings constitute strong evidence that Mus81 and Eme1 are subunits of a nuclear Holliday junction resolvase.  相似文献   

19.
20.
The structure-specific Mus81-Eme1/Mms4 endonuclease contributes importantly to DNA repair and genome integrity maintenance. Here, using budding yeast, we have studied its function and regulation during the cellular response to DNA damage and show that this endonuclease is necessary for successful chromosome replication and cell survival in the presence of DNA lesions that interfere with replication fork progression. On the contrary, Mus81-Mms4 is not required for coping with replicative stress originated by acute treatment with hydroxyurea (HU), which causes fork stalling. Despite its requirement for dealing with DNA lesions that hinder DNA replication, Mus81-Mms4 activation is not induced by DNA damage at replication forks. Full Mus81-Mms4 activity is only acquired when cells finish S-phase and the endonuclease executes its function after the bulk of genome replication is completed. This post-replicative mode of action of Mus81-Mms4 limits its nucleolytic activity during S-phase, thus avoiding the potential cleavage of DNA substrates that could cause genomic instability during DNA replication. At the same time, it constitutes an efficient fail-safe mechanism for processing DNA intermediates that cannot be resolved by other proteins and persist after bulk DNA synthesis, which guarantees the completion of DNA repair and faithful chromosome replication when the DNA is damaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号