首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whole human blood is incubated for periods of ½ to 3 hours with K42 at 37°C. At the close of this period, called pre-incubation, the plasma is removed from the cells and the cells, now become radioactive, are again incubated in a mixture of plasma and buffer for periods of up to 10 additional hours. The time course of the K42 activity of the incubating medium is followed. Characteristically, after 2 hours of pre-incubation, the activity in the medium rises to a peak about 1 and ½ hours after resuspension, and then falls slowly until at 10 hours it is very close to its initial value at the beginning of the resuspension interval. This transient rise in K42 activity in the medium is taken to indicate that the red cell does not consist of a single uniform K compartment, but contains at least two compartments. Thus one cellular compartment contains a reservoir of high specific activity K which provides the specific activity gradient necessary to drive the K42 content of the medium to its transient peak. Experiments with Na indicate that its behavior in this respect is unlike that of K. The experimental data are matched to a simple model system which is capable of theoretical analysis with the aid of an analogue computer. The model system, whose characteristics agree fairly well with those observed experimentally on red cell suspensions, comprises two intracellular compartments, one containing 2.35 m.eq. K/liter blood, and the other 44.1 m.eq. K/liter blood. The plasma K content is 2.64 m.eq./liter blood. The flux between plasma and the smaller intracellular compartment is 0.65 m.eq. K/liter blood hour; that between the smaller and the larger intracellular compartment, 1.77 m.eq. K/liter blood hour; and that between the larger intracellular compartment and the plasma is 0.34 m.eq. K/liter blood hour.  相似文献   

2.
The inward transport of potassium by separated dog erythrocytes has been studied at concentrations of potassium in the medium from 2.9 to 25.0 m.eq./liter and at 38.0 and 33.0 degrees C. At the physiological concentration of external potassium (4.06 m.eq./liter medium), the inward potassium flux is 0.11 m.eq./liter cells hour and the glucose consumption is 2.0 mM/liter cells hour. The dependence of potassium influx on extracellular potassium concentration is given by the following equation, K influx (m.eq./liter cells hour) = 0.028 [K](amb.) - 0.003 in which [K](amb.) refers to the potassium concentration in the medium. In a single 93 hour experiment, 94 per cent of the intracellular potassium was exchanged at an apparently uniform rate. The average apparent activation energy for the process is 7,750 calories +/- 2,000 calories/mol and there is some indication that the apparent activation energy of inward K transport decreases with increasing external K concentration.  相似文献   

3.
The relative Na24 specific activity of red cells and plasma was measured at periods up to 30 hours following a single intravenous injection of Na24 in normal healthy young adults. The average specific activity of the red cells relative to that of the plasma at 24 hours and beyond was found to average 0.83 ± 0.05 in a series of five normal individuals, significantly different from 1.0. This indicates that all the intracellular Na is not exchangeable in 24 hours, and confirms earlier in vitro results. The red cell Na concentration in man was shown to be 12.1 ± 1.1 m.eq. Na/liter red cell, as measured in a series of nineteen normal healthy young adults. A theoretical analysis of the data on exchangeable cell Na suggests that the red cell Na (5.3 m.eq. Na/liter blood) is divided into a fast compartment comprising 4.25 m.eq. Na/liter blood, and a slow compartment comprising 1.07 m.eq. Na/liter blood. If these compartments are arranged in parallel, the flux between plasma and fast compartment is 1.32 m.eq. Na/liter blood hour, and that between plasma and slow compartment is 0.016 m.eq. Na/liter blood hour. Results of experiments on two patients with congenital hemolytic jaundice suggest that the fraction of slowly exchanging Na may increase with the age of the red cell.  相似文献   

4.
We have examined the utility of a commercial kit procedure for the determination of ethanol (EtOH), based upon its enzymatic oxidation and the concurrent production of NADH, monitored by photometry at 340 nm. We found that the equilibrium production of NADH is not stoichiometric with respect to initial ethanol concentration, and that with this procedure, the calibration curve for end-point assay of ethanol is linear only for very dilute solutions. Likewise, the kinetic assay of ethanol using the kit procedure is limited to very dilute samples (i.e., concentration in the reaction mixture of ?2.3 mg EtOH/liter). We describe a simple modification of the kit procedure which makes it amenable to the precise kinetic assay of up to 150 mg EtOH/liter in the reaction mixture. This increase in the dynamic range for kinetic assay of ethanol results form the use of hydrazine both as a trapping agent for the acetaldehyde reaction product and as a competitive inhibitor of alcohol dehydrogenase enzyme.  相似文献   

5.
Ethanol stimulates glycogenolysis in livers from fed rats.   总被引:2,自引:0,他引:2  
To determine the reason for the lack of a hypoglycemic effect of ethanol in the fed state, the effect of ethanol on glucose turnover, liver glycogenolysis, and glucose metabolites was determined. Chronically catheterized awake and freely moving fed rats received either ethanol (blood ethanol, 37 +/- 10 mmol/liter, n = 11) or saline (n = 13) intravenously for 4 hr. Glucose turnover was determined using a primed continuous infusion of [3-3H]glucose. The liver was freeze clamped at 4 hr for glycogen and metabolite measurements. Plasma glucose (5.8 +/- 0.3 mmol/liter vs 6.3 +/- 0.2 mmol/liter at 4 hr, ethanol versus saline) and the rate of glucose turnover (61 +/- 9 vs 58 +/- 8 moles/kg.min) were similar during the ethanol and saline infusions. Plasma lactate was significantly higher in the ethanol (1.32 +/- 0.05 mmol/liter) than in the saline (0.86 +/- 0.06 mmol/liter, P less than 0.001) study. Concentrations of gluconeogenic intermediates in the liver (glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, and pyruvate) were all significantly and -30% lower in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol (0.38 +/- 0.03 mmol/liter) and saline (0.37 +/- 0.04 mmol/liter) studies. Liver glycogen was 75% lower in the ethanol-infused (61 +/- 9 mmol/kg dry wt) than the saline (242 +/- 27 mmol/kg dry wt, P less than 0.001)-infused rats. These data demonstrate that in fed rats given ethanol, glucose turnover is maintained constant by accelerated glycogenolysis. Thus, inhibition of gluconeogenesis by ethanol does not lower hepatic glucose production unless compensatory glycogenolysis can be prevented.  相似文献   

6.
High carbohydrate diets enhance the hepatic output of very low density lipoprotein triglycerides. The fatty acids of these triglycerides could come from exogenous sources (i.e., diet or adipose tissue) or from de novo fatty acid synthesis in the liver. The role of exogenous free fatty acids was evaluated in rats fed Purina Chow or diets containing 10% fructose for up to 14 wk. In carbohydrate-fed rats, serum triglycerides were twice normal, and VLDL accounted for about 60% of the increases. Pre-beta-lipoprotein was increased and alpha- and beta-lipoprotein were decreased. Phospholipid and cholesterol levels were unchanged. Livers were perfused with glucose and free fatty acids. Perfusate free fatty acids rose from 180 to 1800 micro eq/liter as the infused acids increased from 0 to 992 micro eq/3 hr; simultaneously, net free fatty acid uptake rose from < 1 to 18 micro eq/g/hr and triglyceride output by the liver doubled. However, rates of secretion of triglyceride became constant, and triglyceride accumulated in liver at uptakes of free fatty acids > 13 micro eq/g/hr. More lauric and myristic acid appeared in the perfusate than was infused, suggesting the hepatic discharge of free fatty acids. Livers of fructose-fed rats secreted twice as much oleate-(14)C-labeled triglyceride as controls at all levels of free fatty acid uptake. The ratios of the specific activities of perfusate triglyceride to free oleate-(14)C were unaffected by diet and were about 0.6 and 1.0 at low and high triglyceride secretion rates, respectively. Thus, carbohydrate feeding did not result in altered uptakes of free fatty acids or preferential secretion of triglycerides containing endogenously synthesized fatty acid. Instead, the increased secretion of triglyceride was accomplished by enhanced formation of VLDL triglyceride from exogenous free fatty acids.  相似文献   

7.
The permeability of the human erythrocyte to sodium and potassium   总被引:35,自引:13,他引:22  
Measurements have been made on the permeability of the human erythrocyte to Na and K in vitro, using radioactive tracers to observe the system in the steady state. The average inward K flux is 1.67 m.eq./liter cells hour, and the apparent activation energy is 12,300 ± 1300 calories/mol. The inward K flux is independent of the external K concentration in the range of concentrations studied (4 to 16 m.eq. K/liter plasma). Rb appears to compete with K for transport into the cell, whereas Na and Li do not. The average inward Na flux is 3.08 ± 0.57 m.eq. Na/liter cells hour, and the apparent activation energies are 20,200 ± 2700 calories/mol for inward transport, and 14,900 ± 3,400 calories/mol for outward transport. The inward Na flux is dependent on the external Na concentration, but not in a linear fashion. Li appears to compete with Na for inward transport, whereas K and Rb do not. An approximate maximum estimate shows that the energy required for cation transport is only 8.8 calories/mol liter cells hour of the 110 calories/mol liter cells hour available from the consumption of glucose. A working hypothesis for the transport of Na and K is presented.  相似文献   

8.
An ethanol hyper-producing clostridial strain, I-1-B, was isolated from Shibi hot spring, Kagoshima prefecture and identified as Clostridium thermocellum based on morphological and physiological proper­ ties. The carbohydrates used as energy sources were glucose, fructose, cellobiose, cellulose and esculin. Fermentation products were ethanol, lactate, acetate, formate, carbon dioxide, and hydrogen. The optimum, maximum, and minimum temperature for growth are about 60, 70, and 47°C, respectively. Optimum pH for growth is about 7.5, and growth occurs at starting pH between 6.0 and 9.0. I-1-B strain has strong tolerance for ethanol and hyper ethanol-productivity. Ethanol concentrations causing 50%. decrease of growth yield are 27 and 16g/liter for I-1-B and ATCC27405 of C. thermocellum, respectively. The organism was cultured on a medium containing 80 g/liter cellulose at 60°C for 156 h. The culture was fed with a vitamin mixture containing vitamin B12 and mineral salts solution at intervals. In this culture the organism produced 23.6 g/liter (512mM) ethanol, 8.5 g/liter (94mM) lactate, 2.9 g/liter (48mM) acetate, and 0.9 g/liter (20mM) formate. The molar ratio of ethanol to total acidic products was 3.2. The ethanol productivity of the strain I-1-B is superior to any of the wild and mutant strains of C. thermocellum so far reported.  相似文献   

9.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

10.
The H(+)/ATP ratio and the standard Gibbs free energy of ATP synthesis were determined with a new method using a chemiosmotic model system. The purified H(+)-translocating ATP synthase from chloroplasts was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. During reconstitution, the internal phase was equilibrated with the reconstitution medium, and thereby the pH of the internal liposomal phase, pH(in), could be measured with a conventional glass electrode. The rates of ATP synthesis and hydrolysis were measured with the luciferin/luciferase assay after an acid-base transition at different [ATP]/([ADP][P(i)]) ratios as a function of deltapH, analysing the range from the ATP synthesis to the ATP hydrolysis direction and the deltapH at equilibrium, deltapH (eq) (zero net rate), was determined. The analysis of the [ATP]/([ADP][P(i)]) ratio as a function of deltapH (eq) and of the transmembrane electrochemical potential difference, delta micro approximately (H)(+) (eq), resulted in H(+)/ATP ratios of 3.9 +/- 0.2 at pH 8.45 and 4.0 +/- 0.3 at pH 8.05. The standard Gibbs free energies of ATP synthesis were determined to be 37 +/- 2 kJ/mol at pH 8.45 and 36 +/- 3 kJ/mol at pH 8.05.  相似文献   

11.
It was recently shown experimentally that the friction coefficient of articular cartilage correlates with the interstitial fluid pressurization, supporting the hypothesis that interstitial water pressurization plays a fundamental role in the frictional response by supporting most of the load during the early time response. A recent study showed that enzymatic treatment with chondroitinase ABC causes a decrease in the maximum fluid load support of bovine articular cartilage in unconfined compression. The hypothesis of this study is that treatment with chondroitinase ABC will increase the friction coefficient of articular cartilage in stress relaxation. Articular cartilage samples (n = 34) harvested from the femoral condyles of five bovine knee joints (1-3 months old) were tested in unconfined compression with simultaneous continuous sliding (+/-1.5 mm at 1 mm/s) under stress relaxation. Results showed a significantly higher minimum friction coefficient in specimens treated with 0.1 micro/ml of chondroitinase ABC for 24 h (micro(min) = 0.082+/-0.024) compared to control specimens (micro(min) = 0.047+/-0.014). Treated samples also exhibited higher equilibrium friction coefficient (micro(eq) = 0.232+/-0.049) than control samples (micro(eq) = 0.184+/-0.036), which suggest that the frictional response is greatly influenced by the degree of tissue degradation. The fluid load support was predicted from theory, and the maximum value (as a percentage of the total applied load) was lower in treated specimens (77+/-12%) than in control specimens (85+/-6%). Based on earlier findings, the increase in the ratio micro(min)/micro(eq) may be attributed to the decrease in fluid load support.  相似文献   

12.
The influence of increasing ethanol concentration in the feed on growth and physiological activity of the yeast Candida utlis was studied. The measurements were made at steady states of continuous culture under constant values of dilution rate, temperature, and pH in all stages of the fermentor; Synthetic ethanol was used as the sole source of carbon and energy in the concentration range 10-100 g/liter. The maximum biomass concentration in the effluent and maximum productivity was achieved at 75 g ethanol/liter in the feed. In respect to ethanol losses in the outlet and biomass yield, the optimum ethanol concentration in the input of the growth medium was found to be about 50 g/liter using a four-stage system.  相似文献   

13.
The inhibitory effect of ethanol is studied during alcoholic fermentation in strict anaerobiosis (initial dissolved oxygen stripped by gasing pure nitrogen). It is demonstrated that the ethanol produced during the batch fermentation is more inhibitory than the added ethanol (in the range of 0 to 72.6g/liter). By analogy with noncompetitive enzyme kinetic inhibition, the inhibition constant for added ethanol is 105.2 g/liter and 3.8 g/liter for produced ethanol, which exhibits the same inhibition effects in all experiments where ethanol was added. The measurement of the intracellular alcohol concentration can explain the dual inhibitory effects of ethanol.  相似文献   

14.
Microbial conversion of renewable raw materials to useful products is an important objective in industrial biotechnology. Pichia stipitis, a yeast that naturally ferments xylose, was genetically engineered for l-(+)-lactate production. We constructed a P. stipitis strain that expressed the l-lactate dehydrogenase (LDH) from Lactobacillus helveticus under the control of the P. stipitis fermentative ADH1 promoter. Xylose, glucose, or a mixture of the two sugars was used as the carbon source for lactate production. The constructed P. stipitis strain produced a higher level of lactate and a higher yield on xylose than on glucose. Lactate accumulated as the main product in xylose-containing medium, with 58 g/liter lactate produced from 100 g/liter xylose. Relatively efficient lactate production also occurred on glucose medium, with 41 g/liter lactate produced from 94 g/liter glucose. In the presence of both sugars, xylose and glucose were consumed simultaneously and converted predominantly to lactate. Lactate was produced at the expense of ethanol, whose production decreased to approximately 15 to 30% of the wild-type level on xylose-containing medium and to 70 to 80% of the wild-type level on glucose-containing medium. Thus, LDH competed efficiently with the ethanol pathway for pyruvate, even though the pathway from pyruvate to ethanol was intact. Our results show, for the first time, that lactate production from xylose by a yeast species is feasible and efficient. This is encouraging for further development of yeast-based bioprocesses to produce lactate from lignocellulosic raw material.  相似文献   

15.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

16.
Bacterial strains A2 and HE5, isolated by enrichment culture techniques, were shown to produce extracellular, nondialyzable materials which disperse limestone powders in water. These materials are referred to as biodispersans. Strains A2 and HE5 were classified as Acinetobacter calcoaceticus by physiological and genetic tests. An assay for limestone-dispersing activity was developed which is based on the settling time of a standard 10% limestone-in-water mixture. The assay was proportional to biodispersan concentration between 40 and 100 mug/ml. Dispersion was optimum between pH 9 and 12. Phosphate (2 mM) and magnesium (8 mM) ions caused a 50% inhibition of activity. An optimized medium for the production of biodispersan was developed with ethanol as the substrate. Biodispersan was produced only after the bacteria completed their exponential growth phase and continued during the stationary phase, reaching over 4 g of crude biodispersan per liter.  相似文献   

17.
The effect of ACTH and adrenal steroids on K transport in human erythrocytes has been studied. A new method of calculation has revealed that in normal human erythrocytes the K transport is not independent of external K concentration as had previously been thought. The equation describing the relationship is, K influx (m.eq./liter cells hour) = [K]pi/(0.697 + 0.329 [K]pi) in which [K]pi refers to the plasma K concentration at the beginning of the experiment. At the physiological plasma K concentration of 4.65 m.eq./liter, K influx is 2.09 m.eq./liter cells hour; K efflux is 1.95 m.eq./liter cells hour and is independent of plasma K concentration. The effect of the infusion of ACTH and adrenal steroids on the K content of the erythrocytes was also studied. Infusions of ACTH or cortisone do not cause the expected loss in erythrocyte K content and may well cause a gain. Infusions of ACTH and cortisone decrease the rate of K influx and efflux slightly at all stages of the infusion, as measured in vitro in blood samples drawn at various times during and following the infusion. However, the erythrocytes incubated in vitro do not exhibit the same changes in K content as are found in vivo. Hydrocortisone added to normal cells in vitro also decreases both influx and efflux of K, without affecting the K content of the cells.  相似文献   

18.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 micro mol/g, while nitrogen-starved cells still contained approximately 6 micro mol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

19.
The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h−1 at 50 g of sugar per liter to 0.13 h−1 at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.  相似文献   

20.
The specific aim of this study was to investigate the effect of chondroitinase ABC treatment on the frictional response of bovine articular cartilage against glass, under creep loading. The hypothesis is that chondroitinase ABC treatment increases the friction coefficient of bovine articular cartilage under creep. Articular cartilage samples (n = 12) harvested from two bovine knee joints (1-3 months old) were divided into a control group (intact specimens) and a treated group (chondroitinase ABC digestion), and tested in unconfined compression with simultaneous continuous sliding (+/- 4 mm at 1 mm/s) under a constant applied stress of 0.5 MPa, for 2500 s. The time-dependent response of the friction coefficient was measured. With increasing duration of loading, treated samples exhibited a significantly higher friction coefficient than control samples as assessed by the equilibrium value (treated: micro(eq) = 0.19 +/- 0.02; control: micro(eq) = 0.12 +/- 0.03; p = 0.002), though the coefficient achieved immediately upon loading did not increase significantly (treated: micro(min) = 0.0053 +/- 0.0025; control: micro(min) = 0.037 +/- 0.0013; p = 0.19). Our results demonstrate that removal of the cartilage glycosaminoglycans using chondroitinase ABC significantly increases the overall time-dependent friction coefficient of articular cartilage. These findings strengthen the motivation for developing chondroprotective strategies by increasing cartilage chondroitin sulfate content in osteoarthritic joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号