首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the mammalian pineal gland, synaptic bodies (SBs) are poorly understood organelles. Previous studies in rabbits have shown that the organelles are rather heterogeneous in shape, are few in number during the day and increase in number at night. No studies are currently available on seasonal changes in this species and it is unknown whether the biological rhythms are identical in the proximal, intermediate and distal parts of the elongated pineal. To this end, a study was made of 84 rabbits kept under natural lighting conditions to examine numerical variations of the different types of SBs in the proximal, intermediate and distal regions of pineal glands procured at different timepoints of a 24-hour cycle and in each of the four annual seasons. In the present study, rod-like, sphere-like, ovoid, rectangular and triangular SB profiles were distinguished; the first two types being the most abundant. In addition to the well-known circadian changes, with low numbers of SB profiles during the day and high numbers at night, we found pronounced season-related differences as well as differences related to pineal regions. In autumn and winter, nighttime SR profile numbers were significantly higher than in spring and summer. With respect to regional differences it was found that the amplitude of the circadian rhythm increased in a proximo-distal direction in the gland. In autumn the strongly enhanced nocturnal increase was restricted to the distal region of the gland, whereas in winter it was seen in both the distal and the intermediate regions. The regional differences are probably related to the fact that the postganglionic sympathetic fibres, which regulate pineal function, enter the gland distally and proceed rostrally to the proximal region. Taken together, the results show that day- and nightlength are structurally coded in the pineal gland by means of SB numbers. Provided the SBs of the mammalian pineal gland are involved in synaptic processes, the results suggest that synaptic processes are enhanced at night as well as in autumn and winter.  相似文献   

2.
In addition to the stimulating influence of the sympathetic system on the function of the mammalian pineal gland, neuropeptides such as neuropeptide Y, vasoactive intestinal polypeptide and arginine-vasopressin (AVP) are thought to function as modulators. Since AVP has been shown to influence pineal melatonin synthesis, the aim of the present study was to investigate the possible effects of the second hypothalamic nonapeptide oxytocin (OT), which likewise has been detected in the pineal gland. We therefore studied synaptic ribbon (SR) numbers, N-acetyltransferase (NAT) activity and the intracellular concentration of cyclic guanosine monophosphate (cGMP) following in vitro incubation of rat pineals in media containing OT (10-5 M), noradrenaline (NA, 10-5 M) or both NA and OT. Pineal glands were derived from rats of three different strains (Sprague-Dawley, Long-Evans and the AVP-deficient strain Brattleboro). Neither morphological nor biochemical analyses showed a difference between control and OT-incubated organs in any of the strains tested. In Brattleboro rats, but not in the other strains, noradrenaline slightly increased the number of SR which was not observed when NA and OT were combined. The addition of NA resulted in distinct augmentation of NAT activity and cGMP content, which were not affected by additional OT application. These results suggest that oxytocin is not crucially involved in the regulation of pineal gland function.  相似文献   

3.
Summary Synaptic ribbons (SR) of the mammalian pineal gland are functionally enigmatic. In the present study it is shown that in male guinea-pigs kept under a lighting regimen of 12 hrs illumination (7.00–19.00) and 12 hrs darkness (19.00–7.00) the SR of pinealocytes vary about 25-fold in number over a period of 24 hrs. An increase is found between 15.00 and 6.00 and a decrease between 6.00 and 15.00. Analysis of the intracellular localization and the topographical relationships indicate that SR lie near the cell membrane of pinealocytes throughout the 24 hr period and that they are related to adjacent pinealocytes. A working hypothesis put forward implies that SR represent cell organelles involved in intercellular communication and that it is their function to either enhance the secretory activity of the pineal gland or to establish circuits within the gland between adjacent pinealocytes, similar to neuronal circuits.The skilled technical assistance of Mrs. C. Howe is gratefully acknowledged.  相似文献   

4.
5.
Summary To characterize further the functionally enigmatic synaptic ribbons (SR) of the mammalian pineal gland and to study possible relationships to melatonin synthesis, in the present investigation rats were exposed to short pulses of light at night when both SR numbers and serotonin N-acetyltransferase (NAT) activity are high in comparison to day-time values. Male Sprague-Dawley rats were killed at 13:00 and 01:00 h, respectively, and at 01:10 and 02:00 h after exposure to light for 10 and 60 min, respectively. The pineals were rapidly taken out and cut sagittally in half. One half was processed for electron-microscopic quantitation of SR numbers and the other half for NAT determinations. It was found that both SR numbers and NAT activity decreased significantly when the animals were exposed to light at night. Although both parameters showed corresponding changes, there was no clear-cut correlation between SR numbers and NAT activity in individual animals within a group, except after exposure to light for 60 min when a positive correlation (R = 0.939; p < 0.05) existed. After exposure to light the electron-lucent vesicles of the SR decreased in number, but the length of the SR was unchanged. These results show that numbers of pineal SR can be easily and quickly manipulated and that the presently used model may be ideal in studying the poorly understood mode in which degradation of SR occurs.Recipient of a DAAD stipend, on leave from Department of Zoology, University of Burdwan, Burdwan, India  相似文献   

6.
7.
The anatomy and innervation of the mammalian pineal gland   总被引:8,自引:0,他引:8  
The parenchymal cells of the mammalian pineal gland are the hormone-producing pinealocytes and the interstitial cells. In addition, perivascular phagocytes are present. The phagocytes share antigenic properties with microglial and antigen-presenting cells. In certain species, the pineal gland also contains neurons and/or neuron-like peptidergic cells. The peptidergic cells might influence the pinealocyte by a paracrine secretion of the peptide. Nerve fibers innervating the mammalian pineal gland originate from perikarya located in the sympathetic superior cervical ganglion and the parasympathetic sphenopalatine and otic ganglia. The sympathetic nerve fibers contain norepinephrine and neuropeptide Y as neurotransmitters. The parasympathetic nerve fibers contain vasoactive intestinal peptide and peptide histidine isoleucine. Recently, neurons in the trigeminal ganglion, containing substance P, calcitonin gene-related peptide, and pituitary adenylate cyclase-activating peptide, have been shown to project to the mammalian pineal gland. Finally, nerve fibers originating from perikarya located in the brain containing, for example, GABA, orexin, serotonin, histamine, oxytocin, and vasopressin innervate the pineal gland directly via the pineal stalk. Biochemical studies have demonstrated numerous receptors on the pinealocyte cell membrane, which are able to bind the neurotransmitters located in the pinealopetal nerve fibers. These findings indicate that the mammalian pinealocyte can be influenced by a plethora of neurotransmitters.  相似文献   

8.
The purpose of this study was to determine structural and immunocytochemical changes taking place during the day and at night in developing sheep pineal gland under natural non-stimulatory photoperiods (summer solstice). Additionally, the diurnal cycle of plasma melatonin levels was charted and differences between diurnal and nocturnal pineal melatonin concentrations were analyzed. 36 ewes of three different ages were examined: infants (1-6 months old), pubertal and early fertile age (9-24 months old) and adults (36-60 months old). Plasma and pineal gland melatonin levels were higher in pubertal sheep than in infants or adults. Pubertal sheep pineal glands were also heavier, contained a larger number of pinealocytes and interstitial cells and displayed more evident innervation and vascularisation than infants or adults. There was no difference in the number of pinealocytes and interstitial cells between animals killed during daylight or at night. Gland weight, pinealocyte nuclear profile areas and plasma melatonin concentrations were all significantly higher at night than during the day.  相似文献   

9.
Although pineal "synaptic" ribbons (SR) are frequently examined by means of quantitative electron microscopy, their functional significance remains unclear. The same is true for related structures--"synaptic" spherules (SPH). In the course of such studies, it has been noted that SR counts may differ from laboratory to laboratory. Because seasonal changes may play a role, a 2-year study was performed on male rats kept under routine laboratory conditions and killed at monthly intervals during daytime or nighttime. Both structures examined showed distinct day-night differences throughout the year, with higher numbers at night than during the day. There were significant annual changes in both SR and SPH during both daytime and nighttime. The comparison of the curves from the 2 years showed that they were virtually identical both during daytime and nighttime. The numbers of SR were the highest in October and the lowest in April; the numbers of SPH had two plateaus, one with lower values from November to April, and the other with higher values from May to October. It appears from the present study that SR and SPH numbers in the rat pineal gland show statistically significant and precisely timed seasonal changes that may well account for the variations of SR numbers in the different publications.  相似文献   

10.
In the pineal gland numbers of synaptic ribbons (SR) undergo day/night changes which parallel the rhythm of melatonin synthesis. Since pineal biosynthetic activity is controlled by activation of adrenoreceptors, we investigated the effects of adrenergic agonists and antagonists on pineal synaptic ribbon numbers and N-acetyltransferase (NAT) activity, the key enzyme of melatonin synthesis in rats. In vivo application of the beta-adrenergic antagonist propranolol decreased melatonin synthesis when given during the dark phase but did not affect SR numbers. Treatment during daytime with the beta-adrenergic agonist isoproterenol increased pineal NAT activity whereas SR numbers did not change. Norepinephrine stimulated NAT activity in vitro in a dose-dependent manner, but did not elevate SR numbers. Incubation with an analog of the second messenger cyclic adenosine monophosphate increased both NAT activity and SR numbers. These results suggest that the beta-adrenergic system does not play a decisive role in the regulation of the nocturnal increase in SR numbers observed in the rat pineal gland.  相似文献   

11.
Summary 1. Innervation of the mammalian pineal gland is mainly sympathetic. Pineal synthesis of melatonin and its levels in the circulation are thought to be under strict adrenergic control of serotoninN-acetyltransferase (NAT). In addition, several putative pineal neurotransmitters modulate melatonin synthesis and secretion.2. In this review, we summarize what is currently known on the pineal cholinergic system. Cholinergic signaling in the rat pineal gland is suggested based on the localization of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), as well as muscarinic and nicotinic ACh binding sites in the gland.3. A functional role of ACh may be regulation of pineal synaptic ribbon numbers and modulation of melatonin secretion, events possibly mediated by phosphoinositide (PI) hydrolysis and activation of protein kinase C via muscarinic ACh receptors (mAChRs).4. We also present previously unpublished data obtained using primary cultures of rat pinealocytes in an attempt to get more direct information on the effects of cholinergic stimulus on pinealocyte melatonin secretion. These studies revealed that the cholinergic effects on melatonin release are restricted mainly to intact pineal glands since they were not readily detected in primary pinealocyte cultures.  相似文献   

12.
Summary Previous studies have shown that the synaptic ribbons (SR) and spherules (SS) of the mammalian pineal gland may respond differently under physiological and various experimental conditions. The aim of the present study was to gain insight into the mechanisms that may be responsible for the numerical changes of these organelles during a 24-h cycle. As the possibility exists that the structures are influenced by substances synthesized within the pinealocyte, rat pineal glands were cultured with and without added melatonin or serotonin, using an experimental protocol such that the addition of melatonin and serotonin mimicks the circadian changes of the respective substances within the pineal. The tissue was processed for electron microscopy and the numbers of SR and SS were counted in a unit area of pineal tissue. The results obtained indicate that melatonin added to the incubation medium increases the number of SR in the first half of the night; serotonin decreases SR numbers in the morning. SS numbers, by contrast, decrease following melatonin administration in the afternoon, and increase in the morning following serotonin administration. It thus appears that the numbers of SR and SS are influenced by melatonin and serotonin and that the two structures are regulated by differential, but nevertheless biochemically closely related mechanisms.Financial support of the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm Neuroendokrinologie, Vo 135/8-4), the Polish Academy of Sciences (Research Program 10.4.04.6), and the Freunde der Universität Mainz e.V. is gratefully acknowledged.On leave from Department of Anatomy, University Medical School, Pécs, Hungary  相似文献   

13.
The biosynthesis of the hormone melatonin (MEL) by the mammalian pineal gland has been thought to be regulated strictly by stimulatory factors, most predominantly norepinephrine (NE), released from the sympathetic nerve fibers which heavily innervate the gland. Evidence from many investigators suggests that sympathetic fibers may colocalize other neuroactive factors in addition to NE. One of these factors is neuropeptide Y (NPY), which has been found in the nerve fibers of the pineal gland. The present study sought to explore potential interactions between NE and NPY in the regulation of pineal MEL secretion. Specific, saturable, and reversible binding of 125I-NPY to intact cultured pinealocytes was measured with an affinity constant of 1 nM and an NPY binding site density of 0.04 pmol/mg of protein. In addition, cell culture studies revealed that NPY represents a potent (IC50 of 0.4 nM) endogenous inhibitor of NE-stimulated MEL secretion. However, this inhibition is accompanied by only a modest reduction (35%) of cyclic AMP accumulation. These findings reinforce the view that the mammalian pineal gland, which appears to integrate both inhibitory as well as stimulatory signals, is an important model of autonomic function, particularly in the context of biological rhythmicity.  相似文献   

14.
Previous studies have shown that the pineal glands of different stocks and strains of laboratory rats have different melatonin-forming capacities. In the present investigation a widely studied morphological parameter of the pineal, i.e. synaptic ribbon (SR) and synaptic spherule (SS) numbers, was explored in 6 different stocks and strains of laboratory rats, viz.:Han:WIST (albino), LEW/Han (albino), DA/Han (agouti), BN/Han (dark brown), LE/Han (black hooded) and (LEW x BN)/F1 (black with white belly). The rats were maintained under the usual laboratory conditions (lights on from 06.00-18.00 h) for 3 weeks and killed between 10.00-12.00 h, when they were 6 weeks old. The pineals were rapidly excised and processed for transmission electron microscopy. The morphology, distribution (in singles or groups, distant from, or near cell membrane etc.) and number of SR and SS per 20,000 microns2 area of pineal tissue were similar in all groups of rats studied. It is concluded that, in contrast to pineal gland size and melatonin synthesis, SR number is a fairly constant pineal parameter in different stocks and strains of laboratory rats and independent of pigmentation.  相似文献   

15.
16.
Summary Extirpation of the superior cervical ganglion was performed in a series of Mongolian gerbils. One or two weeks after the ganglionectomy the animals were injected with a monoamine oxidase inhibitor. Subsequently perfusion fixation was performed using the glyoxylic acid-paraformal-dehydemagnesium method (Lorén et al., 1976) for fluorescence histochemical investigation of the monoamines of the pineal complex. In the ganglionectomized animals all of the blue-fluorescent sympathetic fibers in the pineal complex (superficial pineal gland, deep pineal gland and the pineal stalk) completely disappeared. The yellow indolamine fluorescence of the cells in the superficial pineal and the deep pineal, as well as in the pineal stalk, was markedly reduced after ganglionectomy. No change in the morphology or number of sympathetic fibers in the medial habenular nucleus was observed. These results indicate that the presence of sympathetic nerve fibers with perikarya in the superior cervical ganglion is necessary for maintaining a high indolamine content in all three parts of the pineal complex. In addition, the results also indicate that the deep pineal gland is a functional part of the pineal complex. The presence of a functionally active deep pineal, bordering the pineal recess, suggests that part of the pineal hormones might be secreted into the cerebrospinal fluid.This work was supported by the Carlsberg Foundation, the Swedish Natural Science Research Council, grant no. 2126-100, and the Danish Medical Research Council, grant no. 512-7134  相似文献   

17.
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity.  相似文献   

18.
19.
The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 μtesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non-visible electromagnetic fields influence the melatonin forming ability of the pineal gland remain unknown; however, the retinas in particular have been theorized to serve as magnetoreceptors with the altered melatonin cycle being a consequence of a disturbance in the neural biological clock, i.e., the suprachiasmatic nuclei (SCN) of the hypothalamus, which generates the circadian melatonin rhythm. The disturbances in pineal melatonin production induced by either light exposure or non-visible electromagnetic field exposure at night appear to be the same but whether the underlying mechanisms are similar remains unknown.  相似文献   

20.
Chronic stress affects brain areas involved in learning and emotional responses. Although most studies have concentrated on the effect of stress on limbic-related brain structures, in this study we investigated whether chronic stress might induce impairments in diencephalic structures associated with limbic components of the stress response. Specifically, we analyzed the effect of chronic immobilization stress on the expression of sympathetic markers in the rat epithalamic pineal gland by immunohistochemistry and western blot, whereas the plasma melatonin concentration was determined by radioimmunoassay. We found that chronic stress decreased the expression of three sympathetic markers in the pineal gland, tyrosine hydroxylase, the p75 neurotrophin receptor and alpha-tubulin, while the same treatment did not affect the expression of the non-specific sympathetic markers Erk1 and Erk2, and glyceraldehyde-3-phosphate dehydrogenase. Furthermore, these results were correlated with a significant increase in plasma melatonin concentration in stressed rats when compared with control animals. Our findings indicate that stress may impair pineal sympathetic inputs, leading to an abnormal melatonin release that may contribute to environmental maladaptation. In addition, we propose that the pineal gland is a target of glucocorticoid damage during stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号