首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonergic neurotransmission plays an important role during neural development. Serotonergic dysfunction is observed in various psychiatric disorders and many psychoactive drugs target proteins on serotonergic neurons. Serotonergic neurons are located in the raphé nuclei and densely innervate the whole brain. The low number and the intricate accessibility of these neurons do not allow to culture them and therefore to date it was impossible to study drug-target interactions on bona fide serotonergic neurons. In order to circumvent such problems we have developed a protocol that allows the rapid and efficient generation of serotonergic neurons from mouse embryonic stem cells. Neuronal precursors were obtained by neuronal stem sphere formation in floating culture in the presence of various mitogens. Differentiation into neurons was induced by withdrawal of the mitogens. About 90% of the resulting neurons exhibited a serotonergic phenotype as judged by immunostaining against serotonin, its synthesising enzyme tryptophan hydroxylase 2, the serotonin transporter as well as 5-HT1(A) and 5-HT1(B) autoreceptors. In addition, we found expression of the vesicular monoamine transporter vMAT2 and the presynaptic protein Bassoon, which is involved in organizing the assembly of the presynaptic active zone. Depolarisation-induced calcium influx was visualised by Fluo-4, and accompanying exocytotic events by FM dye staining. Proteins involved in 5-HT release and re-uptake as well as depolarisation evoked exocytosis were evenly co-distributed on neurites and cell bodies suggesting that ES cell-derived serotonergic neurons also exhibit somatodendritic release comparable to serotonergic neurons in the raphé nuclei.  相似文献   

2.
The paper presents a comparative study of NO neurons in the solitary tract nucleus, giant-cell, and lateral reticular nuclei in rats at 4, 7, 10, 14, 30, 45, and 60 days old and 3, 6, 12, 18, 24 months old. We determine the active quantitative and qualitative changes that occur in NO-positive neurons in the studied nuclei during the course of postnatal development. A low level of enzyme activity is observed on the first day; it reaches a peak level around the first-third month, then slowly declines. The size and number of nitroxidergic neurons increases, while the relative cell density decreases until the third month of life. We reveal local differences in the ontogenetic development of NO neurons in the studied nuclei. Solitary tract neurons have the highest rate of development, while NO neurons of old animals undergo early and extreme changes as compared to other studied nuclei of rat medulla oblongata.  相似文献   

3.
4.
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT 1A autoreceptors within the dorsal raphe nucleus (DRN). We investigated whether this receptor adaptation also occurs upon NK1 receptor blockade. C57B/L6J mice were treated for 21 days with the selective NK1 receptor antagonist GR 205171 (10 mg/kg daily) through subcutaneously implanted osmotic mini pumps, and DRN 5-HT 1A autoreceptor functioning was assessed using various approaches. Recording of DRN serotonergic neurons in brainstem slices showed that GR 205171 treatment reduced (by approximately 1.5 fold) the potency of the 5-HT 1A receptor agonist, ipsapirone, to inhibit cell firing. In parallel, the 5-HT 1A autoreceptor-mediated [35S]GTP-gamma-S binding induced by 5-carboxamidotryptamine onto the DRN in brainstem sections was significantly decreased in GR 205171-treated mice. In vivo microdialysis showed that the cortical 5-HT overflow caused by acute injection of the SSRI paroxetine (1 mg/kg) was twice as high in GR 205171-treated as in vehicle-treated controls. In the DRN, basal 5-HT outflow was significantly enhanced by GR 205171 treatment. These data supported the hypothesis that chronic NK1 receptor blockade induces a functional desensitization of 5-HT 1A autoreceptors similar to that observed with SSRIs.  相似文献   

5.
The caudal ventrolateral reticular formation of the medulla oblongata is the first layer of visceral nociceptive processing. In experiments on rats, neuronal responses in this zone to nociceptive stimulation of the large intestine were examined and the effects of selective blockade of 5-HT3 receptors on these responses were assessed. By the character of responses to nociceptive colorectal stimulation (CRS), the recorded medullary neurons were divided into three groups—excited, inhibited and indifferent. Intravenous injection of 5-HT3 antagonist granisetron (1 and 2 mg/kg) as well as local application of this agent on the surface of the medulla oblongata (1.25 and 2.5 nmole) suppressed the background and evoked firing of CRS-excited reticular neurons in a dose-dependent manner but did not exert as pronounced influence on the cells inhibited by visceral nociceptive stimulation. Spike activity in the group of CRS-indifferent neurons under similar conditions was 5-HT3-independent. The results obtained provide evidence that 5-HT3 receptors mediate the facilitating effect of serotonin on supraspinal transmission of the abdominal nociceptive stimulus which, at least in part, is realized via selective activation of visceral medullary nociceptive neurons. A shutdown of this mechanism may underlie the analgesic effect of 5-HT3 antagonists in abdominal pain syndromes.  相似文献   

6.
Serotonergic neurons located at the base of the mammalian brain innervate practically every region of the brain and the spinal cord. These neurons exhibit spontaneous electrical discharges in a rhythmical way. Their firing frequency is modulated by serotonin autoreceptors which also regulate intracellular cAMP levels. We have investigated how elevated levels of cAMP alter the development and the functional properties of serotonergic neurons in culture. To study the influence of cAMP on the expression of genes underlying serotonergic activity, a quantitative RT-PCR approach using internal standards was developed. Cultures of embryonic rat brain serotonergic neurons were continuously treated with cAMP analogues. Increased cAMP levels had three effects. First, the neuronal morphology was changed towards that typical for mature serotonergic neurons. Second, the expression of tryptophan hydroxylase, the rate-limiting enzyme in serotonin production, was increased in dibutyryl-cAMP treated cultures. Third, the expression of the inhibitory autoreceptor (5-HT1A) was down-regulated. These results suggest the existence of a mechanism by which the neurons react to synaptic input regulating intracellular cAMP levels. Increased cAMP concentrations affect the development and cause a prolonged activation of serotonergic transmission. Since 5-HT1A receptors inhibit cAMP formation, their down-regulation argues against a negative feedback control in this system, consistent with observations in vivo.  相似文献   

7.
Distribution and activity of acetylcholinesterase (AChE) in the neurons of the central vagal nuclei at the level of the medulla oblongata were studied in intact and alloxan-diabetic adult male rats by Gomori's histochemical method. Peculiarities of intracellular distribution of the enzyme in the Nucl. dorsalis n. vagi (ND) and Nucl. ambiguus n. vagi (NA) of intact animals were demonstrated. Changes in the ratio of cholinergic neurons with moderate and strongly-positive AChE staining reactions were revealed in the ND of alloxan-diabetic rats. The dynamics of the changes attested to increased AChE activity of these neurons in response to insulin deficiency. The data obtained are additional evidence for the responsiveness of ND neurons to insulin deficiency, which was demonstrated earlier in alloxan-diabetic rats by karyometry (Akmayev and Rabkina, 1976 b). It is suggested that changes in the plasma glucose or insulin levels may be the stimulus that influences the activity of the ND cholinergic neurons. By means of this mechanism the central vagal nucleus at the medulla oblongata level may be implicated in the feedback control of insulin secretion.  相似文献   

8.
Abstract: Using in vivo microdialysis, we have characterized serotonin release from the rostral ventromedial medulla of the freely moving rat. Addition of tetrodotoxin or removal of calcium from the dialysis solution diminished the dialysate serotonin content, suggesting that spontaneous, calcium channel- and sodium channel-dependent neuronal release mechanisms contribute to the extracellular serotonin collected from the rostral ventromedial medulla. Extracellular serotonin concentration was increased by depolarization (with 100 m M potassium) and by the local administration of either a reuptake blocker (citalopram), a monoamine oxidase inhibitor (pargyline), or amphetamine. Serotonin release was reduced significantly by 8-hydroxy-2-(di- n -propylamino)tetralin, suggesting that serotonin1A receptors may regulate release from rostral ventromedial medulla neurons. Because the basal serotonin concentration in the rostral ventromedial medulla was approximately twofold higher than that collected from the rostral ventrolateral medulla, a region that contains serotonin terminals but many fewer cell bodies, the possibility of release of serotonin from rostral ventromedial medulla neurons is discussed. Finally, intraplantar formalin injection significantly increased serotonin release, suggesting that this neurotransmitter contributes to nociceptive modulation by regulating the outflow of the rostral ventromedial medulla neurons.  相似文献   

9.
In situ hybridization was combined with serotonin (5-hydroxytryptamine, 5-HT) or tyrosine hydroxylase immunocytochemistry and with Fluoro-Gold retrograde labeling of bulbo-spinal pathways in order to investigate the expression of GAP-43 mRNA in monoamine cell groups of the adult rat brain stem. Consistent with previous reports, GAP-43 mRNA was observed in serotonin and dopamine cell groups in the pons. In addition, GAP-43 expressing cells were observed in all the major monoamine cell groups in the medulla. Thus the B1, B2 and B3 serotonin cell groups all showed high GAP-43 expression and all contained many GAP-43 expressing serotonin cells with spinal cord projections. The A1, A2, A5 and A6 noradrenalin cell groups also showed high GAP-43 expression, although cells with spinal cord projections were largely restricted to the A5 group and A6 subcoeruleus region. In all areas, GAP-43 expressing cells with spinal cord projections were also observed which were not serotonergic or noradrenergic.  相似文献   

10.
Transmitters of the raphe-spinal complex: immunocytochemical studies   总被引:2,自引:0,他引:2  
The localization of serotonergic and various peptidergic neurons in the medullary raphe nuclei that project to the lumbosacral spinal cord have been studied using a retrograde transport method combined with immunocytochemistry. Spinally projecting neurons stained for serotonin-like, substance P-like, enkephalin-like and thyrotropin-releasing hormone-like immunoreactivity were all observed in the raphe nuclei of the medulla, as well as in the adjacent ventrolateral reticular formation. The distribution of the descending serotonergic and peptidergic neurons in the raphe nuclei as well as quantitative data on their relative numbers suggest that a large fraction of raphe-spinal neurons contain serotonin co-existing with one or more peptides in the same cell.  相似文献   

11.
The firing activity of serotonergic neurons in raphe nuclei is regulated by negative feedback exerted by extracellular serotonin (5-HT)o acting through somatodendritic 5-HT1A autoreceptors. The steady-state [5-HT]o, sensed by 5-HT1A autoreceptors, is determined by the balance between the rates of 5-HT release and reuptake. Although it is well established that reuptake of 5-HTo is mediated by 5-HT transporters (SERT), the release mechanism has remained unclear. It is also unclear how selective 5-HT reuptake inhibitor (SSRI) antidepressants increase the [5-HT]o in raphe nuclei and suppress serotonergic neuron activity, thereby potentially diminishing their own therapeutic effect. Using an electrophysiological approach in a slice preparation, we show that, in the dorsal raphe nucleus (DRN), continuous nonexocytotic 5-HT release is responsible for suppression of phenylephrine-facilitated serotonergic neuron firing under basal conditions as well as for autoinhibition induced by SSRI application. By using 5-HT1A autoreceptor-activated G protein–gated inwardly rectifying potassium channels of patched serotonergic neurons as 5-HTo sensors, we show substantial nonexocytotic 5-HT release under conditions of abolished firing activity, Ca2+ influx, vesicular monoamine transporter 2–mediated vesicular accumulation of 5-HT, and SERT-mediated 5-HT transport. Our results reveal a cytosolic origin of 5-HTo in the DRN and suggest that 5-HTo may be supplied by simple diffusion across the plasma membrane, primarily from the dense network of neurites of serotonergic neurons surrounding the cell bodies. These findings indicate that the serotonergic system does not function as a sum of independently acting neurons but as a highly interdependent neuronal network, characterized by a shared neurotransmitter pool and the regulation of firing activity by an interneuronal, yet activity-independent, nonexocytotic mechanism.  相似文献   

12.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

13.
14.
We investigated innervation to body wall muscles as well as distribution of 5-HT (serotonin) and its effects on longitudinal muscles of body wall (LMBW) of the sea cucumber Apostichopus japonicus. With serial sections we found neural branches and fibers extending from hyponeural part of radial nerve towards LMBW and circular muscles of body wall. With the aqueous aldehyde (Faglu) method yellow fluorescence indicating indolamines was observed in LMBW and in the mesentery connecting LMBW to the body wall. With indirect immunohistochemistry 5-HT-like immunoreactivity was observed in LMBW and in mesentery. These results strongly suggested that both LMBW and mesentery contained 5-HT. The effects of monoamine neurotransmitters were studied in LMBW. Putative neurotransmitters tested were 5-HT, adrenaline, noradrenaline, dopamine, and DOPA at the concentration of 10(-6) M. The application of 5-HT caused no contraction or relaxation, but it inhibited the contraction induced by 10(-6)-10(-5) M acetylcholine (ACh). Catecholamines were ineffective by themselves and had no effects on the contraction induced by ACh. The present histological, histochemical, and pharmacological studies strongly suggested that holothurian LMBW was innervated by inhibitory serotonergic neurons of the hyponeural nervous system.  相似文献   

15.
The content of serotonin and its metabolite 5-hydroxyindoleacetic acid, monoamine oxidase activity, and [3H]-serotonin radioligand receptor binding were examined in the prefrontal cortex, striatum, amygdala, hippocampus and periaqueductal gray matter at different time after one-trial passive avoidance training of rats. Changes in the serotonergic activity were observed only in rats, which showed retrieval of conditioned passive avoidance response. No serotonergic changes were found immediately and one day after training. Also, there were no changes in trained rats without retrieval of conditioned passive avoidance response or rats with experimental amnesia. The pattern of the involvement of brain structures in the retrieval process was also revealed. [3H]-serotonin binding was decreased in the amygdala, periaqueductal gray matter and striatum, whereas it did not change in the prefrontal cortex and hippocampus. At the same time, the serotonin content in these structures did not differ from that of intact rats. Deamination of serotonin by monoamine oxidase and active transport of 5-hydroxyindoleacetic acid from nerve terminals were increased in the amygdala and periaqueductal gray matter, whereas in the striatum serotonin catabolism was decreased. The obtained differences in serotonin catabo- lism suggest that the decrease in receptor binding of serotonin in these brain structures is provided by different synaptic processes: presynaptic changes in the striatum and postsynaptic receptor changes in the amygdala and periaqueductal gray matter. It is concluded that the decrease in the serotonergic activity in the amygdala and periaqueductal gray matter represents one of the mechanisms activating the emotiogenic system mediating the memory trace retrieval in inhibitory avoidance learning.  相似文献   

16.
We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.  相似文献   

17.
The level of acetylcholinesterase (AChE) in brain regions of O. mossambicus at different intervals showed the extent of phosalone toxicity. Significant inhibition of AChE at the end of 96 hr in the brain regions was observed. In contrast to AChE inhibition, the monoamine oxidase (MAO) activity showed significant increase in the regions of cerebral hemispheres, dien/mesencephalon, cerebellum and medulla oblongata. The increase of MAO activity in the brain regions under phosalone toxicity is considered to be one of the mechanisms to maintain the amines level in O. mossambicus.  相似文献   

18.
In vivo voltammetry or microdialysis was used to monitor catecholaminergic metabolism in the C1 region of the ventrolateral medulla oblongata of anesthetized rats. In vivo voltammetry allowed the recording of a catechol oxidation current (CA.OC) peak in this region. This CA.OC was suppressed after inhibition of monoamine oxidase by pargyline or after inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine and was markedly increased after blockade of dopamine-beta-hydroxylase by FLA 63. Similar results were found when intracerebral microdialysis coupled with HPLC and electrochemical detection was used to measure the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysates obtained from the C1 region: The changes in CA.OC and DOPAC concentration in the dialysates exhibited very similar kinetic characteristics in the three pharmacological experiments. These results support the involvement of DOPAC as a major component of the electrochemical signal recorded by voltammetry in the C1 group of adrenergic neurons.  相似文献   

19.
The role of genetic and environmental factors as well as brain neurochemistry in regulating aggressive and submissive behaviors in animals are considered. We present a review of data on changes in brain monoaminergic activity (synthesis, catabolism, receptors) and on the expression of monoaminergic genes under repeated daily agonistic confrontations in male mice. A repeated experience of aggression was shown to result in the total activation of the dopaminergic systems and the inhibition of the serotonergic one. This was accompanied by a decrease in the mRNA level of the cathecol-O-methyltransferase gene in the midbrain and an increase of the mRNA level of the dopamine transporter and tyrosine hydroxylase genes in the ventral tegmental area of aggressive male mice. Repeated experience of social defeats produced dynamic changes in the serotonergic system of some brain areas and an increase of the mRNA level of the serotonin transporter and monoamine oxidase A genes in the midbrain raphe nuclei. Theoretical and methodological possibilities of the proposed ethological approach for studying molecular mechanisms of agonistic behavior are discussed in the context of the fundamental problem of investigating the ways of regulation from behavior to gene.  相似文献   

20.
The effect of short-term fasting and thirst, prolonged fasting and hypoxic hypoxia upon the activity of cytochrome oxidase was studied in mitochondrial fractions obtained from the brain and the liver. The investigation was carried out in two groups of rats, 5 and 60 days old. a) The activity of cytochrome oxidase in mitochondria isolated from the brain cortex, subcortical regions and the medulla oblongata rises, while the changes in liver mitochondrial fractions are reverse. b) A significant increase of mitochondrial cytochrome oxidase was found in 5-day-old rats after both types of fasting and hypoxia in all regions of the brain, as well as in the liver. c) The cytochrome oxidase activity in brain and liver mitochondria of 60-day-old rats was not affected appreciably after 24 h nutritional deprivation, with the exception of a significant rise of activity in the medulla oblongata. Prolonged fasting and hypoxia again markedly increased the activity of this enzyme in all regions of the brain and in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号