首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An alkaline phosphatase mutant of Pseudomonas aeruginosa exhibiting both regulatory and catalytic changes was isolated. Under repression conditions (i.e. high inorganic phosphate (Pi)) the mutant culture produced an alkaline phosphatase (APase) displaying significant activity against both beta-glycerol phosphate (betaGP) and p-nitrophenyl phosphate (pNPP), while the wild type displayed no activity directed towards these substrates under the same conditions. In vivo, the mutant enzyme's ratio of specific activities was 45:1 in favour of betaGP versus pNPP, whereas this ratio was reversed to 1:9 betaGP versus pNPP for the same enzyme isolated from mutant cells. In addition, the kinetic parameters and stability requirements for the mutant-derived enzyme was altered in comparison with those of the wild type. A study of lipopolysaccharide (LPS) preparations from both the mutant and wild type indicated the mutant to be deficient in the core region of its LPS. The authors propose that the modifications in the catalytic activity of the mutant enzyme, demonstrated in vivo, are due to a change in the enzyme's microenvironment.  相似文献   

2.
When grown in a minimal medium and suspended for 2 hours in distilled water, seawater, phosphate buffer or a polyphosphate solution,E. coli MC4100 cells with high alkaline phosphatase activity survived in seawater for longer periods than cells with low or no activity. However, mutant cells totally deprived of alkaline phosphatase activity held in phosphate-containing media before transfer to seawater showed survival almost as high as the wild type strain, indicating that alkaline phosphatase activity is not the only factor influencing survival. Alkaline phosphatase activity also increased the protection of cells provided by glycine betaine. Survival was enhanced when cells were preincubated in the presence of phosphate or polyphosphate. Thus, the transfer of cells in wastewater could influence their subsequent survival in seawater.  相似文献   

3.
4.
Sites of alkaline phosphatase activity have been located by an electron microscopic histochemical (Gomori) technique in vegetative cells of a repressible strain SB15 of Bacillus subtilis, derepressed and repressed by inorganic phosphate, and in a mutant SB1004 which forms alkaline phosphatase in a medium high in phosphate. The sites of enzyme activity were revealed as discrete, dense, and largely spherical bodies of varying sizes (20 to 150 nm). Cells of both repressible and repression-resistant strains acted on a wide variety of phosphate esters (p-nitrophenylphosphate, beta-glycerophosphate, adenosine-5'-phosphate, glucose-6-phosphate, glucose-l-phosphate, adenosine triphosphate, and sodium pyrophosphate) to produce inorganic phosphorus under conditions of alkaline phosphatase assay [0.05 m tris(hydroxymethyl)aminomethane buffer (pH 8.4) containing 2 mm MgCl(2)]. The purified alkaline phosphatase also acted on all these esters, although much less effectively on adenosine triphosphate and sodium pyrophosphate than did the cells. Comparison of the relative utilization of the various substrates by repressed and derepressed cells and purified enzyme suggested the presence of multiple enzymes in the cells. Thus, the cytochemical method of trapping the newly generated inorganic phosphorus determines the location of an alkaline phosphatase of broad substrate profile, and in addition locates the sites of other enzymes generating inorganic phosphorus under identical conditions of assay. It is intriguing that all of these enzymes usually exist in a few clusters attached to the peripheral plasma membrane. In addition to this predominant location, there were a few sites of enzyme activity in the cytoplasm unattached to any discernible structure, and also in the cell wall of the repression-resistant and of the derepressed, repressible strains.  相似文献   

5.
The roles of alkaline phosphatase and labile internal mineral in matrix vesicle-mediated mineralization have been studied by selectively releasing the enzyme from a wide variety of matrix vesicle preparations using treatment with a bacterial phosphatidylinositol-specific phospholipase C and by demineralization of the vesicles using isosmotic pH 6 buffer. Following depletion of 50-90% of the alkaline phosphatase activity or treatment with citrate buffer, the vesicles were tested for their ability to accumulate 45Ca2+ and 32Pi from a synthetic cartilage lymph. Removal of alkaline phosphatase by phospholipase C treatment caused two principal effects, depending on the matrix vesicle preparation. In rapidly mineralizing vesicle fractions which did not require organic phosphate esters (Po) to accumulate mineral ions, release of alkaline phosphatase had only a minor effect. In slowly mineralizing vesicles preparations or those dependent on Po substrates for mineral ion uptake, release of alkaline phosphatase caused significant loss of mineralizing activity. The activity of rapidly calcifying vesicles was shown to be dependent on the presence of labile internal mineral, as demonstrated by major loss in activity when the vesicles were decalcified by various treatments. Ion uptake by demineralized vesicles or those fractionated on sucrose step gradients required Po and was significantly decreased by alkaline phosphatase depletion. Uptake of Pi, however, was not coupled with hydrolysis of the Po substrate. These findings argue against a direct role for alkaline phosphatase as a porter in matrix vesicle Pi uptake, contrary to previous postulates. The results emphasize the importance of internal labile mineral in rapid uptake of mineral ions by matrix vesicles.  相似文献   

6.
The intracellular nucleotide pool of Escherichia coli W3110 reproducibly changes from conditions of growth in phosphate excess to phosphate starvation, with at least two nucleotides appearing under starvation conditions and two nucleotides appearing only under excess phosphate conditions. Strains bearing a deletion of the phoA gene show the same pattern, indicating that dephosphorylation by alkaline phosphatase is not responsible for the changes. Strains with mutations in the phoU gene, which result in constitutive expression of the pho regulon, show the nucleotide pattern of phosphate-starved cells even during phosphate excess growth. These changes in nucleotides are therefore due to phoU mutation but not to alkaline phosphatase constitutivity. In fact, a phoR (phoR68) mutant strain has the patterns of the wild type in spite of being constitutive for alkaline phosphatase. That these nucleotides might be specific signals for pho regulon expression was supported by the fact that the two nucleotides appearing under phosphate starvation induced the synthesis of alkaline phosphatase in repressed permeabilized wild-type cells under conditions of phosphate excess.  相似文献   

7.
Summary The periplasmic phosphate binding protein is a product of the phoS gene and is an essential component of the phosphate specific transport (PST) system, which mediates Pi uptake in Escherichia coli. The binding of Pi to periplasmic protein(s) and the kinetic parameters of Pi uptake were studied in phoT and pstB mutants of E. coli. These mutants are impaired in Pi uptake but have a periplasmic Pi-binding protein whose Pi-binding acpacity was estimated by the retention kinetics. The Pi-binding activity in two pstB mutants was found to be weaker as compared to phoT9 and the wild type. The K D values for Pi binding to periplasmic protein were determined by equilibrium dialysis. In the pstB mutants the K D value was found to be 9–31 times higher than the values obtained for the wild type and the phoT mutant. The apparent K m values for Pi uptake in one pstB mutant is 14.3 times higher than in the wild type. V max of the mutant is 8.3 times lower that of the wild type. The data indicate that pstB, an essential gene of the PST transport system, is promoting the binding capacity of the Pi-binding protein.Abbreviations AP alkaline phosphatase - Pi inorganic orthophosphate - Km kanamycin  相似文献   

8.
Bacterial alkaline phosphatase catalyzes the hydrolysis and transphosphorylation of phosphate monoesters. Site-directed mutagenesis was used to change the active-site residue Asp-153 to Ala and Asn. In the wild-type enzyme Asp-153 forms a second-sphere complex with Mg2+. The activity of mutant enzymes D153N and D153A is dependent on the inclusion of Mg2+ in the assay buffer. The steady-state kinetic parameters of the D153N mutant display small enhancements, relative to wild type, in buffers containing 10 mM Mg2+. In contrast, the D153A mutation gives rise to a 6.3-fold increase in kcat, a 13.7-fold increase in kcat/Km (50 mM Tris, pH 8), and a 159-fold increase in Ki for Pi (1 M Tris, pH 8). In addition, the activity of D153A increases 25-fold as the pH is increased from 7 to 9. D153A hydrolyzes substrates with widely differing pKa's of their phenolic leaving groups (PNPP and DNPP), at similar rates. As with wild type, the rate-determining step takes place after the initial nucleophilic displacement (k2). The increase in kcat for the D153A mutant indicates that the rate of release of phosphate from the enzyme product complex (k4) has been enhanced.  相似文献   

9.
The present study was designed to identify nutrient-dependent changes in extracellular pH and acid phosphatase secretion in the biA1 palC4 mutant strain of Aspergillus nidulans. The palC4 mutant was selected as lacking alkaline phosphatase, but having substantially increased acid phosphatase activity when grown on solid minimal medium under phosphate starvation, pH 6.5. Gene palC was identified as a putative member of a conserved signaling cascade involved in ambient alkaline sensing whose sole function is to promote the proteolytic activation of PacC at alkaline pH. We showed that both poor growth and conidiation of the palC4 mutant strain on solid medium, alkaline pH, were relative to its hypersensitivity to Tris (hydroxymethyl) aminomethane buffer. Also, the secretion of acid phosphatase was repressed when both the wild-type and palC4 mutant strains were grown in low-phosphate yeast extract liquid medium, pH 5.0, indicating that the secretion of this enzyme is not necessary to regenerate inorganic phosphate from the organic phosphate pool present in yeast extract.  相似文献   

10.
An alkaline phosphatase secretion-blocked mutant of Bacillus licheniformis 749/C was isolated. This mutant had defects in the phoP and phoR regions of the chromosome. The selection procedure was based on the rationale that N-methyl-N'-nitro-N-nitrosoguanidine can induce mutations of closely linked multiple genes. The malate gene and the phoP and phoR genes are located at the 260-min position in the Bacillus subtilis chromosome; hence, the malate gene could be used as a marker for the mutation of the phoP and phoR regions of the chromosome. In a two-step selection procedure, strains defective in malate utilization were first selected with the cephalosporin C procedure. Second, these malate-defective strains were further screened in a dye medium to select strains with defects in alkaline phosphatase secretion. One stable mutant (B. licheniformis 749/cNM 105) had a total secretion block for alkaline phosphatase and had the following additional characteristics: (i) the amount of alkaline phosphatase synthesized was comparable to that in the wild type; (ii) the alkaline phosphatase was membrane bound; (iii) the mutant strain alkaline phosphatase, in contrast to that of the wild type, could not be extracted with MgCl2, although the amounts of protein extracted from each strain were comparable; (iv) the sodium dodecyl sulfate-polyacrylamide gel pattern of MgCl2-extracted proteins from the mutant strain was different from that of the wild-type proteins; (v) the mutant, unlike the wild type, could not use malate as a sole source of carbon; and (vi) the outside surface of the wall of the mutant cells contained an additional electron-dense layer that was not present on the wild-type cell wall surface.  相似文献   

11.
The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases. Molecular cloning indicated that hps4 is a new allele of SABRE, which was previously identified as an important regulator of cell expansion in Arabidopsis. HPS4/SABRE antagonistically interacts with ethylene signalling to regulate plant responses to Pi starvation. Furthermore, it is shown that Pi-starved hps4 mutants accumulate more auxin in their root tips than the wild type, which may explain the increased inhibition of their primary root growth when grown under Pi deficiency.  相似文献   

12.
Alcaligenes spec. strain GL (IMET 11314) is able to grow on glyphosate (N-[phosphonomethyl]glycine) and other phosphonates as sole source of phosphorus. Degradation of glyphosate to inorganic phosphate and sarcosine by this strain is subject to several regulatory principles. While uptake and dephosphonation of glyphosate are regulated by Pi starvation, the intensity of glyphosate degradation is also controlled by the cellular ability to utilize the C-skeleton derived from glyphosate. Depending on the external concentration of glyphosate, the liberated sarcosine is differentially metabolised. Utilization of the sarcosine moiety and complete incorporation of 3-[14C]-label of glyphosate into cellular material occur only in cultures adapted to higher concentrations (5 mM) of the herbicide. At low concentrations of glyphosate (1 mM) only the Pi required by the growing cultures is utilized but not the sarcosine. Initially high rates of glyphosate uptake obtained after Pi-starvation decrease in the presence of low glyphosate concentrations. It is suggested that uptake and metabolism of glyphosate are connected with the expression of the sarcosine metabolizing capacity of the Alcaligenes cells.Abbreviation AMPA aminomethylphosphonic acid  相似文献   

13.
14.
Bozzo GG  Singh VK  Plaxton WC 《FEBS letters》2004,573(1-3):51-54
Within 48 h of the addition of 2.5 mM phosphate (HPO42-, Pi) or phosphite (H2PO3-, Phi) to 8-day-old Pi-starved (-Pi) tomato suspension cells: (i) secreted and intracellular purple acid phosphatase (PAP) activities decreased by about 12- and 6-fold, respectively and (ii) immunoreactive PAP polypeptides either disappeared (secreted PAPs) or were substantially reduced (intracellular PAP). The degradation of both secreted PAP isozymes was correlated with the de novo synthesis of two extracellular serine proteases having M(r)s of 137 and 121 kDa. In vitro proteolysis of purified secreted tomato PAP isozymes occurred following their 24 h incubation with culture filtrate from Pi-resupplied cells. The results indicate that Pi or Phi addition to -Pi tomato cells induces serine proteases that degrade Pi-starvation inducible extracellular proteins.  相似文献   

15.
Activity of PPi-dependent phosphofructokinase (PFP) was monitored in Brassica nigra seedlings grown under nutrient-sufficient or phosphate (Pi)-starved conditions. Roots, stems and leaves of 50 d Pi-deficient seedlings displayed 4.0-, 3.7- and 2.3-fold greater PFP activity, respectively, than did nutrient sufficient controls. This induction was based primarily upon an increased susceptibility of PFP from the Pi-starved tissues to activation by fructose-2,6-bisphosphate. The ratio of PFP to ATP-dependent phosphofructokinase (PFK) was approximately 2:1 and 1:1 in the various organs of 50 d Pi-starved and Pi-fed plants, respectively. Immunoblots probed with anti-(potato PFP) immune serum revealed that the induction of PFP in Pi-starved B. nigra was coincident with an elevation in the amount of PFP α-subunit in the leaves as well as an increase in the α:β subunit ratio in the stems and roots. Induction of PFP in the various tissues was also accompanied by an appreciable decline in intracellular Pi level, decreased soluble protein content, and elevated phosphoenolpyruvate phosphatase activity. Time course studies revealed that these responses to Pi stress were significantly delayed in the leaves as compared to the roots and stems suggesting that Pi may be preferentially sequestered to the leaves during Pi starvation. These data also provide further evidence that B. nigra PFP is an adaptive enzyme that may function during Pi deprivation as: (1) a glycolytic bypass to PFK; and (2) a ‘Pi-recycling system’ that converts esterified-P to Pi that would be rapidly reassimilated into the metabolism of the Pi-deficient cells.  相似文献   

16.
17.
A new species of orthophosphate repressible extracellular 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) was found to be released into mycelial culture media when a wild type strain of Neurospora crassa was grown on limiting amounts of phosphate. The production of 5'-nucleotidase and extracellular acid and alkaline phosphatase was inhibited by the addition of rifampicin when it was added at the later stage of mycelial growth, but not when it was added at a very early stage. The 5'-nucleotidase and extracellular alkaline phosphatase were partially purified and characterized. pH optimum of the former was 6.8 and that of the latter was higher than 10.0. The 5'-nucleotidase activity was inhibited by ethylenediaminetetraacetate (EDTA) and ZnCl2 at pH 6.8 and stimulated by MnCl2 and CoCl2 at pH 4.0. Alkaline phosphatase activity was stimulated by EDTA, MgCl2, CoCl2 and MnCl2. 5'-nucleotidase activity was stimulated by EDTA, MgCl2, CoCl2 and MnCl2. 5'-nucleotidase hydrolyzed various 5'-nucletides but not 3'-nucleotides or other various phosphomono- and diester compounds. Alkaline phosphatase hydrolyzed all the phosphomonoester compounds tested. Mutants, nuc-1 and nuc-2, which were originally isolated by the inability to utilize RNA or DNA as a sole source of phosphate, were unable to produce 5'-nucleotidase or six other repressible enzymes reported previously. These mutants showed no or significantly reduced growth on orthophosphate-free nucleotide media depending on the number of conidia inoculated, mainly because of loss of ability to produce these repressible extracellular phosphatases.  相似文献   

18.
19.
High light stress (40 W/m2)-induced alterations in the nitrogen assimilatory enzymes in Spirulina platensis were studied under the Ca2+ and phosphate (Pi)-supplemented as well as starved conditions. Results revealed that activities of nitrate reductase (NR), amino acid transferases (AST/GOT and ALT/GPT), and protease enzymes in the high-light-incubated cells were relatively higher under the Ca2+- and Pi-starved conditions. On the contrary, relative rates of glutamine synthetase (GS) and ATPase activities were lower in the Ca2+- and Pi-starved cells. But the Spirulina cells under the Ca2+- and Pi-added conditions showed enhanced activity of both GS and ATPase enzymes. During the high-light stress, a decline in the GS activity, particularly under the Ca2+- and Pi-starved conditions, was indicative of a nitrogen starvation-like condition. This could be one of the reasons for induction of the NR and protease enzymes. A higher rate of GS activity was recorded under both the Ca2+- and Pi-supplemented conditions, perhaps owing to the enhanced rate of ATPase activity in such conditions. But a declining pattern of both NR and protease activities in the presence of Ca2+ and Pi, despite the higher rate of ATPase activity, might involve some other mechanism like the protein-kinase system. Received: 11 May 2000 / Accepted: 13 June 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号