首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In an outbreak of giardiasis at two day-care nurseries in metropolitan Toranto Giardia lamblia appeared to be transmitted person to person. No common source of infection could be found. The proportions of children infected in the two nurseries were 39% and 17%; infection was spread to 7% and 23% of their household contacts. Of the infected children and household contacts 26% and 30% respectively of those for whom detailed information could be obtained were symptomatic. Canadian children were more likely to be infected and symptomatic than were immigrant children attending the nurseries. The most susceptible ages for infection were 1 to 3 years. The results of this study suggest that all children in day-care nurseries who are infected with G. lamblia should be treated, regardless of whether they are symptomatic.  相似文献   

2.
The Giardia lamblia genome   总被引:5,自引:0,他引:5  
Giardia lamblia is a protozoan parasite of humans and other mammals that is thought to be one of the most primitive extant eukaryotic organisms. Although distinctly eukaryotic, it is notable for its lack of mitochondria, nucleoli, and perixosomes. It has been suggested that Giardia spp. are pre-mitochondriate organisms, but the identification of genes in G. lamblia thought to be of mitochondrial origin has generated controversy regarding that designation. Giardi lamblia trophozoites have two nuclei that are identical in all ways that have been studied. They are polyploid with at least four, and perhaps eight or more, copies of each of five chromosomes per organism and have an estimated genome complexity of 1.2x10(7)bp of DNA, and GC content of 46%. There is evidence for recombination at the telomeres of some of the chromosomes, and multiple size variants of single chromosomes have been identified within cloned isolates. However, the internal regions of the chromosomes demonstrate no evidence of recombination. For example, there is no evidence for control of vsp gene expression by DNA recombination, and no evidence for rapid mutation in the vsp genes. Single pass sequences of approximately 9% of the G. lamblia genome have already been obtained. An ongoing genome project plans to obtain approximately 95% of the genome by a random approach, as well as a complete physical map using a bacterial artificial chromosome library. The results will facilitate a better understanding of the biology of Giardia spp. as well as their phylogenetic relationship to other primitive organisms.  相似文献   

3.
4.
The cytoskeleton of Giardia lamblia   总被引:6,自引:0,他引:6  
Giardia lamblia is a ubiquitous intestinal pathogen of mammals. Evolutionary studies have also defined it as a member of one of the earliest diverging eukaryotic lineages that we are able to cultivate and study in the laboratory. Despite early recognition of its striking structure resembling a half pear endowed with eight flagella and a unique ventral disk, a molecular understanding of the cytoskeleton of Giardia has been slow to emerge. Perhaps most importantly, although the association of Giardia with diarrhoeal disease has been known for several hundred years, little is known of the mechanism by which Giardia exacts such a toll on its host. What is clear, however, is that the flagella and disk are essential for parasite motility and attachment to host intestinal epithelial cells. Because peristaltic flow expels intestinal contents, attachment is necessary for parasites to remain in the small intestine and cause diarrhoea, underscoring the essential role of the cytoskeleton in virulence. This review presents current day knowledge of the cytoskeleton, focusing on its role in motility and attachment. As the advent of new molecular technologies in Giardia sets the stage for a renewed focus on the cytoskeleton and its role in Giardia virulence, we discuss future research directions in cytoskeletal function and regulation.  相似文献   

5.
A codon usage table for the intestinal parasite Giardia lamblia was generated by analysis of the nucleotide sequences of eight genes comprising 3,135 codons. Codon usage revealed a biased use of synonymous codons with a preference for NNC codons (42.1%). The codon usage of G. lamblia more closely resembles that of the prokaryote Halobacterium halobium (correlation coefficient r = 0.73) rather than that of other eukaryotic protozoans, i.e. Trypanosoma brucei (r = 0.434) and Plasmodium falciparum (r = -0.31). These observations are consistent with the view that G. lamblia represents the first line of descent from the ancestral cells that first took on eukaryotic features.  相似文献   

6.
Electron microscopy of Giardia lamblia cysts.   总被引:1,自引:0,他引:1       下载免费PDF全文
The flagellated protozoan Giardia lamblia is a recognized public health problem. Intestinal infection can result in acute or chronic diarrhea with associated symptoms in humans. As part of a study to evaluate removal of G. lamblia cysts from drinking water by the processes of coagulation and dual-media filtration, we developed a methodology by using 5.0-microns-porosity membrane filters to evaluate the filtration efficiency. We found that recovery rates of G. lamblia cysts by membrane filtration varied depending upon the type and diameter of the membrane filter. Examination of membrane-filtered samples by scanning electron microscopy revealed flexible and flattened G. lamblia cysts on the filter surface. This feature may be responsible for the low recovery rates with certain filters and, moreover, may have implications in water treatment technology. Formation of the cyst wall is discussed. Electron micrographs of cysts apparently undergoing binary fission and cysts exhibiting a possible bacterial association are shown.  相似文献   

7.
Detection of Giardia lamblia by immunofluorescence.   总被引:4,自引:4,他引:0       下载免费PDF全文
High-titer immune sera to cysts of Giardia lamblia, produced in guinea pigs, were labeled with fluorescein isothiocyanate. The resulting conjugates were used to detect G. lamblia in stool specimens by fluorescence microscopy. The sera also reacted with cysts of Chilomastix mesnili, but the two organisms could be differentiated by their size.  相似文献   

8.
9.
An isolate of Giardia lamblia infected with the double-stranded RNA virus (GLV) has two major species of RNA that are not present in an uninfected isolate. One of these species is the previously characterized double-stranded RNA genome of GLV (1). The second species of RNA appears to be a full length copy of one strand of the double-stranded RNA genome. This full length single-stranded RNA is not present in viral particles isolated from the growth medium. The cellular concentration of the single-stranded RNA changes during exponential and stationary phases of cell growth in a fashion consistent with a viral replicative intermediate or mRNA. The single-stranded species does not appear to be polyadenylated.  相似文献   

10.
Giardiasis is the most common human protozoal infection. In their cystic phase, giardias are protected from the environment by a filamentous cyst wall made up of carbohydrates, proteins, and by two outer membranes separated from the plasma membrane of the parasite by a peripheral space. The present transmission electron microscope observations of G. lamblia cysts of human origin suggest that the extracellular peritrophic space originates from the growth, elongation, and fusion of large cytoplasmic vacuoles. As the large clear vacuoles grew in size, flattening against the inner face of the plasma membrane, they formed a single vacuole that surrounded the body of the parasite, eventually forming two outer membranes. In mature Giardia cysts, the original plasma membrane of the trophozoite becomes the outermost membrane of the cyst wall (CM1). The large vacuoles form a second membrane surrounding the cyst (CM2), and also form a third membrane (CM3), that becomes the new plasma membrane of the trophozoite. During excystation CM1 and CM2 attach to each other and fragment, leaving abundant membrane residues in the peritrophic space. Knowledge of the biochemical composition and functional properties of the complex outer membranous system of G. lamblia cysts here described will be of use to understand the survival of Giardia cysts in the environment, a major factor responsible for the high prevalence of giardiasis worldwide.  相似文献   

11.
Inactivation of Giardia lamblia and Giardia muris cysts was compared by using an ozone demand-free 0.05 M phosphate buffer in bench-scale batch reactors at 22 degrees C. Ozone was added to each trial from a concentrated stock solution for contact times of 2 and 5 min. The viability of the control and treated cysts was evaluated by using the C3H/HeN mouse and Mongolian gerbil models for G. muris and G. lamblia, respectively. The resistance of G. lamblia to ozone was not significantly different from that of G. muris under the study conditions, contrary to previously reported data that suggested G. lamblia was significantly more sensitive to ozone than G. muris was. The simple Ct value for 2 log unit inactivation of G. lamblia was 2.4 times higher than the Ct value recommended by the Surface Water Treatment Rule.  相似文献   

12.
Inactivation of Giardia lamblia cysts with ozone.   总被引:3,自引:3,他引:0       下载免费PDF全文
Giardia lamblia cysts were inactivated in water with ozone at pH 7.0 and 5 and 25 degrees C. The concentration-time products for 99% inactivation were 0.53 and 0.17 mg-min/liter at 5 and 25 degrees C, respectively. These products were significantly lower than those reported for chlorine.  相似文献   

13.
Mechanisms of Giardia lamblia differentiation into cysts.   总被引:6,自引:0,他引:6       下载免费PDF全文
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic parasites are excellent models with which to study numerous mechanisms involved in cell differentiation, such as the regulation of gene expression, signal transduction pathways, and organelle biogenesis. Unfortunately, many of these studies are very difficult because the conditions needed to elicit developmental changes in parasites remain undetermined in most cases. Recently, several interesting findings were reported on the process of differentiation of Giardia lamblia trophozoites into cysts. G. lamblia is a flagellated protozoan that inhabits the upper small intestine of its vertebrate host and is a major cause of enteric disease worldwide. It belongs to the earliest identified lineage among eukaryotes and therefore offers a unique insight into the progression from primitive to more complex eukaryotic cells. The discovery of a specific stimulus that induces trophozoites to differentiate into cysts, the identification and characterization of encystation-specific molecules, the elucidation of novel biochemical pathways, and the development of useful reagents and techniques have made this parasite an excellent model with which to study differentiation in eukaryotic cells. In this review, we summarize the most recent fundings on several aspects of Giardia differentiation and discuss the significance of these findings within the context of current knowledge in the field.  相似文献   

14.
Giardia lamblia: isolation and axenic cultivation.   总被引:20,自引:0,他引:20  
Giardia lamblia trophozoites have been axenically cultured for more than a year. Initially, organisms were established in a complex liquid medium in the presence of the host's intestinal fungi; subcultures were made of these protozoa-fungus mixtures. G. lamblia trophozoites, free of yeast, were obtained by inoculating a protozoafungus culture in one arm of a U-tube, then later removing, from the other arm of the tube, Giardia trophozoites that had migrated across the base. Medium was changed at 2- or 3-day intervals; numerous subcultures were made. Tests for the possible presence of other organisms in these axenic cultures were negative. Trophozoite cultures remained viable, after freezing in the presence of glycerol, for 14 months. This is the first reported axenic culture of this common human intestinal parasite and pathogen; its study in pure culture is now possible.  相似文献   

15.
16.
We obtained isoenzyme patterns by polyacrylamide gradient gel electrophoresis (PGGE) of water-soluble protein fractions prepared from trophozoites of 11 axenic G. lamblia strains. The strains were isolated from animals and humans (both symptomatic and asymptomatic) from various geographic locations. Isoenzymes were also separated by isoelectric focusing. Of 12 enzymes attempted, eight exhibited well-defined and reproducible isoenzyme patterns by PGGE, based on which the strains were grouped into four zymodemes. Although the 11 strains were grouped into four zymodemes based on PGGE, no correlation between zymodeme and the known characteristics of the strains existed. Thus, a high degree of characteristic sharing appears to occur among genetically different G. lamblia strains.  相似文献   

17.
Naoyuki Iwabe  Takashi Miyata 《Gene》2001,280(1-2):163-167
The parasitic protist Giardia lamblia lacks mitochondria and peroxisomes, as well as many typical membrane-bound organella characteristics of higher eukaryotic cells, together with extremely economized usage of DNA sequence, as demonstrated by the lack of introns. We describe here the presence of overlapping genes in G. lamblia, in which a part of the protein coding sequence of one mRNA exists in a region corresponding to the 3′-noncoding region of another mRNA transcribed from a gene on the opposite strand. Recently we isolated 13 kinesin-related cDNAs from G. lamblia. Nine of these cDNAs contain long 3′-noncoding sequences in which long open reading frames (ORFs) exist (in the remaining four cDNAs, the lengths of the 3′-noncoding sequences are very short). The predicted amino acid sequences of these ORFs were subjected to a search for homologies with sequences in databases. The amino acid sequences of the six ORFs exhibited significant sequence similarities with known sequences. These lines of evidence suggest the frequent occurrence of gene overlap in Giardial genome.  相似文献   

18.
Frequency of variant antigens in Giardia lamblia.   总被引:2,自引:0,他引:2  
Giardia lamblia undergoes antigenic variation. The rate of antigenic variation and the size of the variant antigen repertoire were estimated in clones of Giardia lamblia which reexpresses surface variant antigens that are characteristics of its parent. Calculations were based on determinations of the number of trophozoites expressing defined or nondefined epitopes as well as the total number of trophozoites in newly established clones. The rate of appearance of variant antigens containing defined epitopes was expressed as the number of generations until the first trophozoite expressing a defined epitope appeared. In clones of isolate WB, tested because their major surface variant antigens were largely nondefined, variants expressing epitopes recognized by Mabs 6E7 or 3F6 appeared after approximately 12 generations. Variants expressing epitopes recognized by Mab 5C1 appeared at about 13 generations, significantly greater than for the other epitopes. The rate of antigenic variation was studied in another isolate, GS/M, whose surface epitope repertoire differs from that of isolate WB. A single epitope recognized by Mab G10/4 was tested. Trophozoites reexpressing this epitope first appeared after about 6.5 generations, significantly less than in WB. Therefore, the single epitope studied in isolate GS/M is reexpressed much more frequently than those of WB. In isolate WB, the epitopes recognized by Mab 6E7 and 3F6 tended to appear at the same time. The median number of variant antigens in WB was estimated to lie between 20.5 and 184.  相似文献   

19.
Giardia cyst-like objects detected by immunofluorescence in chlorinated water samples often cannot be positively identified by their morphological appearance. To determine the effect of chlorine on cyst immunofluorescence and morphology, Giardia lamblia cysts were exposed to chlorine for 48 h. The majority of cysts exposed to chlorine concentrations of 1 to 11 mg/liter at 5 and 15 degrees C lost their internal morphological characteristics necessary for identification, but most of them were still detectable by immunofluorescence.  相似文献   

20.
Size variations in homologous chromosomes from six Giardia lamblia isolates have been demonstrated. Four or five intensely stained (major) bands as well as a variable number of lightly stained (minor) bands are present in pulsed field gradient separations. Southern blot analysis with total chromosomal DNA as well as chromosome specific probes indicates that each minor band cross-hybridizes with a major band. Minor bands of doubly cloned organisms appear identical to those of parent clones, indicating that the minor bands do not reflect the presence of variant members within the total population of trophozoites. Densitometric comparisons of chromosome bands from known numbers of Plasmodium falciparum ring stage forms and known numbers of Giardia trophozoites suggest that minor bands MBa and MBb are present in each Giardia trophozoite. Comparison of Not I restriction fragments from the major and minor bands reveals common restriction fragments. Taken together, the data imply that sets of closely related chromosomes occur in the Giardia trophozoite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号