首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Effects of blood viscosity on renin secretion.   总被引:1,自引:0,他引:1  
S Chien  K M Jan  S Simchon 《Biorheology》1990,27(3-4):589-597
The effects of alterations in blood and plasma viscosities on plasma renin activity (PRA) were studied in dogs anesthetized with pentobarbital. Blood viscosity was altered by changing the hematocrit (Hct) level by isovolemic exchange using packed red blood cells or plasma. Plasma viscosity was elevated by isovolemic exchange using Hct-matched blood with high molecular weight dextran (Dx, mean m.w. approximately 450,000) dissolved in plasma. Following control measurements of plasma and blood viscosities, plasma [Dx], PRA, Hct and hemodynamic functions, the dog was subjected to isovolemic exchange transfusions to either alter the Hct or administer the Dx. Various measurements were repeated 40-60 min after each exchange. Arterial pressure and renal blood flow remained relatively constant after exchanges; increases in plasma and blood viscosities were accompanied by a decrease in renal vascular hindrance (vasodilation) to keep the renal flow resistance at control level. PRA rose with increases in plasma [Dx] and viscosity, and the rise in PRA was best correlated with the decrease in renal hindrance. The changes in PRA and renal hindrance have the same regression line whether blood viscosity was altered by Hct variation or Dx administration. The results indicate that increases in viscosity cause a compensatory vasodilation of renal vessels to cause renin secretion.  相似文献   

3.
S Oka  M Nakai 《Biorheology》1989,26(5):921-934
Employing the optimality principle, we attempted to predict the effects of non-Newtonian blood and the metabolic states of individual vessel segments on the optimum vascular design. Our results implied that irrespective of the vessel caliber, the optimum flow rate of non-Newtonian blood through a cylindrical vessel is less than that of Newtonian blood by not more than some 12-13%, even though the non-Newtonian nature is within the pathologically-realistic highest range. Non-Newtonian blood does not exert the slightest degree of influence on the optimum geometry of the vascular bifurcation. In contrast, as the metabolic state of the vessel wall overwhelms that of the blood, the optimum flow through the cylindrical vessel becomes markedly increased: the optimum relative caliber of the branch of the bifurcation decreases and the optimum branching angle increases.  相似文献   

4.
T Murata 《Biorheology》1983,20(5):471-483
The effects of the deformation of red blood cells on non-Newtonian viscosity of a concentrated red cell suspension are investigated theoretically. To simplify the problem an elastic spherical shell filled with an incompressible Newtonian fluid is considered as a model of a normal red cell. The equation of the surface of the shell suspended in a steady simple shear flow is calculated on the assumption that the deformation from a spherical shape is very small. The relative viscosity of a concentrated suspension of such particles is obtained based on the "free surface cell" method proposed by Happel. It is shown that the relative viscosity decreases as the shear rate increases.  相似文献   

5.
The tank-treading rotation of red blood cells (RBCs) in shear flows has been studied extensively with experimental, analytical, and numerical methods. Even for this relatively simple system, complicated motion and deformation behaviors have been observed, and some of the underlying mechanisms are still not well understood. In this study, we attempt to advance our knowledge of the relationship among cell motion, deformation, and flow situations with a numerical model. Our simulation results agree well with experimental data, and confirm the experimental finding of the decrease in frequency/shear-rate ratio with shear rate and the increase of frequency with suspending viscosity. Moreover, based on the detailed information from our simulations, we are able to interpret the frequency dependency on shear rate and suspending viscosity using a simple two-fluid shear model. The information obtained in this study thus is useful for understanding experimental observations of RBCs in shear and other flow situations; the good agreement to experimental measurements also shows the potential usefulness of our model for providing reliable results for microscopic blood flows.  相似文献   

6.
A minimally diseased (mean intimal thickness = 56 microns) human aortic bifurcation was replicated in rigid and compliant flow-through casts. Both casts were perfused with physiological flow waves having the same Reynolds and unsteadiness numbers; the pulse pressure in the compliant cast produced radial strains similar to those expected from post-mortem measurements of the compliance of the original tissue. The compliant cast was perfused with a Newtonian fluid and one whose rheology was closer to that of blood. Wall shear rate histories were estimated from near-wall velocities obtained by laser Doppler velocimetry at identical sites in both casts. Intimal thickness was measured at corresponding sites in the original vessel and linear regressions were performed between these thicknesses and several normalized shear rate measures obtained from the histories. The correlations showed a positive slope--that is, the intima was thicker at sites exposed to higher shear rates--consistent with earlier results for relatively healthy vessels, but their significance was often poor. There was no significant effect of either model compliance or fluid rheology on the slopes of the correlations of intimal thickness against any normalized shear rate measure.  相似文献   

7.
8.
血管紧张素转换酶2(ACE2)和Mas受体的发现使人们对肾素-血管紧张素(RAS)有了更全面的认识。ACE2可水解血管紧张素Ⅰ和血管紧张素Ⅱ直接或间接生成血管紧张素1-7(Ang 1-7),并与高血压的形成密切相关。Ang 1-7主要通过Mas受体引起血管舒张、抑制细胞增殖。ACE2-Ang1-7-Mas轴的发现为RAS的研究、高血压等心血管疾病的防治和新药开发提供了新的思路和方向。  相似文献   

9.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive lipid released from activated platelets and plays an important role in vascular biology. In this study, we investigated Sph-1-P-related metabolism in the blood vessel, mainly using radio-labeled Sph and Sph-1-P. Sph was metabolically stable in the plasma, while it was converted into Sph-1-P in the presence of activated platelets. When the mixture of Sph-1-P and plasma was fractionated on a gel-filtration column, all Sph-1-P co-eluted with protein fractions that coincide with lipoproteins and albumin by agarose gel electrophoresis. When evaluated by polyacrylamide gel electrophoresis, 7.2 +/- 3.8%, 53.3 +/- 6.4%, and 39.5 +/- 7.9% of the radioactivity of Sph-1-P added to plasma was recovered in the low-density lipoprotein (LDL), high-density lipoprotein (HDL), and albumin fractions, respectively. On the other hand, 5.2 +/- 3.2%, 38.4 +/- 5.5%, and 56.3 +/- 5.7% of the radioactivity of Sph-1-P converted from Sph in collagen-stimulated platelets and released into the plasma was recovered in the LDL, HDL, and albumin fractions, respectively. When Sph-1-P release from activated platelets was examined, a stronger response was observed in the presence of albumin than lipoproteins, suggesting efficient Sph-1-P extraction from platelets by albumin. Finally, Sph-1-P, which is stable in the plasma, was markedly degraded by an ectophosphatase activity in the presence of vascular endothelial cells or in whole blood. Although Sph-1-P is stable in the plasma, it is likely that the level of this bioactive lipid is dynamically controlled by various factors including release from platelets, distribution among plasma proteins, and degradation by ectophosphatase.  相似文献   

10.
The effect of physiological changes in systemic blood pressure on the force output of working abductor pollicis (AP) muscle was studied in six normal subjects. Supramaximal tetanic stimulation at the ulnar nerve produced repeated isometric contractions at 1-s intervals. Force output declined gradually with time. During the train of contractions, subjects voluntarily contracted the knee extensors for 1 min; this raised systemic blood pressure by 29%. Force output from AP rose in parallel with blood pressure so that 18% of the contraction force lost through fatigue was recovered for each 10% increase in blood pressure. When blood pressure in the hand was kept constant despite the increased systemic pressure, force output did not rise. The results show that muscle performance is strongly affected by physiological changes in central blood pressure and suggest that sensory input concerning the adequacy of muscle performance exerts a feedback control over the increase in systemic blood pressure during muscular activity.  相似文献   

11.
M F Kiani  A G Hudetz 《Biorheology》1991,28(1-2):65-73
A semi-empirical model is developed to describe the dependence of apparent viscosity of blood on vessel diameter (2.7 to 500 microns) and vessel discharge hematocrit (5% to 60%). The blood flow is modeled as a cell-rich core and a cell-free marginal layer in the larger vessels and an axial-train in the smaller vessels. Laminar (Poiseuille) flow is assumed in all cases. An equation is derived in which apparent viscosity is a function of vessel diameter, core viscosity, and width of marginal layer. This is then complemented by empirical equations in which core viscosity varies exponentially with discharge hematocrit while the width of marginal layer varies linearly with discharge hematocrit. The model correlates well with several sets of experimental data and behaves according to the Fahraeus-Lindqvist effect. Predicted apparent viscosity tends to the expected finite value for large vessel diameters. Dependence of apparent viscosity on vessel diameter is realistically smooth in the whole diameter range.  相似文献   

12.
Human obesity, which is very common in Polycystic Ovaries Syndrome and in “X Syndrome”, constitutes an insulin-resistance state in which multiple clinical, biochemical and hemodynamic alterations coexist. Insulin resistance in the obese has been recently associated with an endothelial dysfunction. To investigate the possibility that clinical and metabolic derangements related to insulin resistance could induce changes in vascular blood flows, we have studied the levels of mesenteric (MBF), renal (RBF) and femoral (FBF) blood flows in Beagle dogs kept for 2 years on a normal (control group) or high fat diet (obese group). This experimental model exhibits many of the abnormalities with the human syndrome. In addition, we have tested the effects of chronic treatment with captopril (capto group) in monotherapy or in association with pravastatin (prava+capto group) on the hemodynamic changes associated with this diet. After the two year follow-up, Transonic flow probes were placed around the three arteries to measure basal blood flows and their response to a hyperinsulinemic-normoglycemic test in anesthetized animals. During this test the degree of insulin sensitivity was estimated. In association with higher body weight, blood pressure, insulin resistance, and fasting levels of insulin and total cholesterol, the obese group exhibited decreased basal levels of FBF and a greater femoral vasoconstriction during hyperinsulinism (P<0.05 vs control). Combined therapy with captopril and pravastatin ameliorated the reduction in basal FBF and hyperinsulinism-induced vasoconstriction (P<0.05), in addition to the beneficial effects on insulin sensitivity, and clinical and metabolic parameters. Synergistic beneficial effects of both drugs on lipid and carbohydrate profiles may account for this positive outcome, by attenuating the atherogenic process associated with this model.  相似文献   

13.
14.
Nerves and blood vessels are branched structures, but whether their branching patterns are established independently or coordinately is not clear. Here we show that arteries, but not veins, are specifically aligned with peripheral nerves in embryonic mouse limb skin. Mutations that eliminate peripheral sensory nerves or Schwann cells prevent proper arteriogenesis, while those that disorganize the nerves maintain the alignment of arteries with misrouted axons. In vitro, sensory neurons or Schwann cells can induce arterial marker expression in isolated embryonic endothelial cells, and VEGF(164/120) is necessary and sufficient to mediate this induction. These data suggest that peripheral nerves provide a template that determines the organotypic pattern of blood vessel branching and arterial differentiation in the skin, via local secretion of VEGF.  相似文献   

15.
The isolated effects of alterations of lung inflation and transmural pulmonary arterial pressure (pressure difference between intravascular and pleural pressure) on pulmonary arterial blood volume (Vpa) were investigated in anesthetized intact dogs. Using transvenous phrenic nerve stimulation, changes in transmural pulmonary arterial pressure (Ptm) at a fixed transpulmonary pressure (Ptp) were produced by the Mueller maneuver, and increases in Ptp at relatively constant Ptm by a quasi-Valsalva maneuver. Also, both Ptm and Ptp were allowed to change during open airway lung inflation. Vpa was determined during these three maneuvers by multiplying pulmonary blood flow by pulmonary arterial mean transit time obtained by an ether plethysmographic method. During open airway lung inflation, mean (plus or minus SD) Ptp increased by 7.2 (plus or minus 3.7) cmH2O and Ptm by 4.3 (plus or minus 3.4) cmH2O for a mean increase in Vpa by 26.2 (plus or minus 10.7) ml. A pulmonary arterial compliance term (Delta Vpa/Delta Ptm) calculated from the Mueller maneuver was 3.9 ml/cmH2O and an interdependence term (Delta Vpa/Delta Ptp) calculated from the quasi-Valsalva maneuver was 2.5 ml/cmH2O for a 19% increase in lung volume, and 1.2 ml/cmH2O for an increase in lung volume from 19% to 35%. These findings indicate that in normal anesthetized dogs near FRC for a given change in Ptp and Ptm the latter results in a greater increase of Vpa.  相似文献   

16.
17.
Vascular permeability factor: a unique regulator of blood vessel function.   总被引:29,自引:0,他引:29  
Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a potent polypeptide regulator of blood vessel function. VPF promotes an array of responses in endothelium, including hyperpermeability, endothelial cell growth, angiogenesis, and enhanced glucose transport. VPF regulates the expression of tissue factor and the glucose transporter. All of the endothelial cell responses to VPF are evidently mediated by high affinity cell surface receptors. Thus, endothelial cells have a unique and specific spectrum of responses to VPF. Since each of the responses of endothelial cells to VPF are also elicited by agonists, such as bFGF, TNF, histamine and others, it remains a major challenge to determine how post-receptor signalling pathways maintain both specificity and redundancy in cellular responses to various agonists.  相似文献   

18.
Tubes of various elastic materials were tested using a purpose-built apparatus to select those most appropriate for physical simulation of the arterial wall. The influences of temperature and longitudinal stress were measured in selected tubes. It was found that the static elasticity of latex tubes is close to that of the arterial wall for intraluminal pressures corresponding to the lower range of intra-arterial pressures.  相似文献   

19.
This paper presents a numerical study of non-Newtonian effects on the solution of shape optimization problems involving unsteady pulsatile blood flow. We consider an idealized two dimensional arterial graft geometry. Our computations are based on the Navier-Stokes equations generalized to non-Newtonian fluid, with the modified Cross model employed to account for the shear-thinning behavior of blood. Using a gradient-based optimization algorithm, we compare the optimal shapes obtained using both the Newtonian and generalized Newtonian constitutive equations. Depending on the shear rate prevalent in the domain, substantial differences in the flow as well as in the computed optimal shape are observed when the Newtonian constitutive equation is replaced by the modified Cross model. By varying a geometric parameter in our test case, we investigate the influence of the shear rate on the solution.  相似文献   

20.
Laser Doppler anemometry experiments and finite element simulations of steady flow in a three dimensional model of the carotid bifurcation were performed to investigate the influence of non-Newtonian properties of blood on the velocity distribution. The axial velocity distribution was measured for two fluids: a non-Newtonian blood analog fluid and a Newtonian reference fluid. Striking differences between the measured flow fields were found. The axial velocity field of the non-Newtonian fluid was flattened, had lower velocity gradients at the divider wall, and higher velocity gradients at the non-divider wall. The flow separation, as found with the Newtonian fluid, was absent. In the computations, the shear thinning behavior of the analog blood fluid was incorporated through the Carreau-Yasuda model. The viscoelastic properties of the fluid were not included. A comparison between the experimental and numerical results showed good agreement, both for the Newtonian and the non-Newtonian fluid. Since only shear thinning was included, this seems to be the dominant non-Newtonian property of the blood analog fluid under steady flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号