首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that an envelope mutant of human immunodeficiency virus type 1 lacking the entire cytoplasmic domain interferes in trans with the production of infectious virus by inclusion of the mutant envelope into the wild-type envelope complex. We also showed that the envelope incorporation into virions is not affected when the wild-type envelope is coexpressed with the mutant envelope. These results suggest that an oligomeric structure of the cytoplasmic domain is functionally required for viral infectivity. To understand whether the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein gp41 has the potential to self-assemble as an oligomer, in the present study we fused the coding sequence of the entire cytoplasmic domain at 3' to the Escherichia coli malE gene, which encodes a monomeric maltose-binding protein. The expressed fusion protein was examined by chemical cross-linking, sucrose gradient centrifugation, and gel filtration. The results showed that the cytoplasmic domain of gp41 assembles into a high-ordered structural complex. The intersubunit interaction of the cytoplasmic domain was also confirmed by a mammalian two-hybrid system that detects protein-protein interactions in eucaryotic cells. A cytoplasmic domain fragment expressed in eucaryotic cells was pulled down by glutathione-Sepharose 4B beads via its association with another cytoplasmic domain fragment fused to the C terminus of the glutathione S-transferase moiety. We also found that sequences encompassing the lentiviral lytic peptide-1 and lentiviral lytic peptide-2, which are located within residues 828-856 and 770-795, respectively, play a critical role in cytoplasmic domain self-assembly. Taken together, the results from the present study indicate that the cytoplasmic domain of gp41 by itself is sufficient to assemble into a multimeric structure. This finding supports the hypothesis that a multimeric form of the gp41 cytoplasmic domain plays a crucial role in virus infectivity.  相似文献   

2.
Human cytomegalovirus (HCMV) glycoprotein B (gB) is an abundant virion envelope protein that has been shown to be essential for the infectivity of HCMV. HCMV gB is also one of the most immunogenic virus-encoded proteins, and a significant fraction of virus neutralizing antibodies are directed at gB. A linear domain of gB designated AD-1 (antigenic domain 1) represents a dominant antibody binding site on this protein. AD-1 from clinical isolates of HCMV exhibits little sequence variation, suggesting that AD-1 plays an essential role in gB structure or function. We investigated this possibility by examining the role of AD-1 in early steps of gB synthesis. Our results from studies using eukaryotic cells indicated that amino acid (aa) 635 of the gB sequence represented the carboxyl-terminal limit of this domain and that deletion of aa 560 to 640 of the gB sequence resulted in loss of AD-1 expression. AD-1 was shown to be required for oligomerization of gB. Mutation of cysteine at either position 573 or 610 in AD-1 resulted in loss of its reactivity with AD-1-specific monoclonal antibodies and gB oligomerization. Infectious virus could not be recovered from HCMV bacterial artificial chromosomes following introduction of these mutations into the HCMV genome, suggesting that AD-1 was an essential structural domain required for gB function in the replicative cycle of HCMV. Sequence alignment of AD-1 with homologous regions of gBs from other herpesviruses demonstrated significant relatedness, raising the possibility that this domain may contribute to multimerization of gBs in other herpesviruses.  相似文献   

3.
Lopper M  Compton T 《Journal of virology》2002,76(12):6073-6082
Glycoprotein B (gB) is the most highly conserved of the envelope glycoproteins of human herpesviruses. The gB protein of human cytomegalovirus (CMV) serves multiple roles in the life cycle of the virus. To investigate structural properties of gB that give rise to its function, we sought to determine the disulfide bond arrangement of gB. To this end, a recombinant form of gB (gB-S) comprising the entire ectodomain of the glycoprotein (amino acids 1 to 750) was constructed and expressed in insect cells. Proteolytic fragmentation and mass spectrometry were performed using purified gB-S, and the five disulfide bonds that link 10 of the 11 highly conserved cysteine residues of gB were mapped. These bonds are C94-C550, C111-C506, C246-C250, C344-C391, and C573-C610. This configuration closely parallels the disulfide bond configuration of herpes simplex type 2 (HSV-2) gB (N. Norais, D. Tang, S. Kaur, S. H. Chamberlain, F. R. Masiarz, R. L. Burke, and F. Markus, J. Virol. 70:7379-7387, 1996). However, despite the high degree of conservation of cysteine residues between CMV gB and HSV-2 gB, the disulfide bond arrangements of the two homologs are not identical. We detected a disulfide bond between the conserved cysteine residue 246 and the nonconserved cysteine residue 250 of CMV gB. We hypothesize that this disulfide bond stabilizes a tight loop in the amino-terminal fragment of CMV gB that does not exist in HSV-2 gB. We predicted that the cysteine residue not found in a disulfide bond of CMV gB, cysteine residue 185, would play a role in dimerization, but a cysteine substitution mutant in cysteine residue 185 showed no apparent defect in the ability to form dimers. These results indicate that gB oligomerization involves additional interactions other than a single disulfide bond. This work represents the second reported disulfide bond structure for a herpesvirus gB homolog, and the discovery that the two structures are not identical underscores the importance of empirically determining structures even for highly conserved proteins.  相似文献   

4.
Seo JY  Britt WJ 《Journal of virology》2008,82(13):6272-6287
Human cytomegalovirus (HCMV) UL99-encoded pp28 is an essential tegument protein required for envelopment and production of infectious virus. Nonenveloped virions accumulate in the cytoplasm of cells infected with recombinant viruses with the UL99 gene deleted. Previous results have suggested that a key function of pp28 in the envelopment of infectious HCMV is expressed after the protein localizes in the assembly compartment (AC). In this study, we investigated the potential role of pp28 multimerization in the envelopment of the infectious virion. Our results indicated that pp28 multimerized during viral infection and that interacting domains responsible for self-interaction were localized in the amino terminus of the protein (amino acids [aa] 1 to 43). The results from transient-expression and/or infection assays indicated that the self-interaction took place in the AC. A mutant pp28 molecule containing only the first 35 aa failed to accumulate in the AC, did not interact with pp28 in the AC, and could not support virus replication. In contrast, the first 50 aa of pp28 was sufficient for the self-interaction within the AC and the assembly of infectious virus. Recombinant viruses encoding an in-frame deletion of aa 26 to 33 of pp28 were replication competent, whereas infectious virus was not recovered from HCMV BACs lacking aa 26 to 43. These findings suggested that the accumulation of pp28 was a prerequisite for multimerization of pp28 within the AC and that pp28 multimerization in the AC represented an essential step in the envelopment and production of infectious virions.  相似文献   

5.
Glycoprotein B (gB; gpUL55) of human cytomegalovirus (HCMV) plays a critical role in virus entry and cell-to-cell spread of infection. To define the structure-function relationships in gB, a panel of linker-insertion mutations was generated throughout the coding region. This strategy yielded a panel of 22 mutants with four amino acid insertions and 3 large truncation mutants. Assessment of the mutant proteins' biosynthetic properties and folding patterns analyzed in context with predicted secondary features revealed novel insights into gB's structure and trafficking properties. All of the insertion mutants were able to assemble into oligomers, suggesting that oligomerization is tolerant of small insertions and/or that multiple regions of the protein may be involved. Computer algorithm predictions of gB's secondary structure indicate that the furin-recognized cleavage site falls within an exposed loop. This loop may be particularly sensitive to structural alterations, since insertions upstream and downstream of the cleavage site rendered the mutant proteins cleavage defective. In addition, a strong correlation existed between terminal folding and cleavage of gB. Interestingly, terminal folding was not correlated with delivery to the cell surface but may influence the rate of transport to the cell surface. Nine mutants, containing insertions in both the extracellular and intracellular portions of gB, retained wild-type structural properties. This panel of characterized gB mutants, the first of this type for an HCMV protein, will be a useful tool in dissecting the role of gB during HCMV infection.  相似文献   

6.
Lee S  Park B  Ahn K 《Journal of virology》2003,77(3):2147-2156
US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum.  相似文献   

7.
Glycoproteins M and N (gM and gN, respectively) are among the few proteins that are conserved across the herpesvirus family. The function of the complex is largely unknown. Whereas deletion from most alphaherpesviruses has marginal effects on the replication of the respective viruses, both proteins are essential for replication of human cytomegalovirus (HCMV). We have constructed a series of mutants in gN to study the function of this protein. gN of HCMV is a type I glycoprotein containing a short carboxy-terminal domain of 14 amino acids, including two cysteine residues directly adjacent to the predicted transmembrane anchor at positions 125 and 126. Deletion of the entire carboxy-terminal domain as well as substitution with the corresponding region from alpha herpesviruses or mutations of both cysteine residues resulted in a replication-incompetent virus. Recombinant viruses containing point mutations of either cysteine residue could be generated. These viruses were profoundly defective for replication. Complex formation of the mutant gNs with gM and transport of the complex to the viral assembly compartment appeared unaltered compared to the wild type. However, in infected cells, large numbers of capsids accumulated in the cytoplasm that failed to acquire an envelope. Transiently expressed gN was shown to be modified by palmitic acid at both cysteine residues. In summary, our data suggest that the carboxy-terminal domain of gN plays a critical role in secondary envelopment of HCMV and that palmitoylation of gN appears to be essential for function in secondary envelopment of HCMV and virus replication.  相似文献   

8.
Cellular annexin II has been shown to specifically bind human cytomegalovirus (HCMV) and be a component of highly purified virions. In this report, we characterize the interaction of annexin II with HCMV. We found that the binding of annexin II to the HCMV envelope occurs partially through the calcium-dependent phospholipid-binding ability of annexin II since some annexin II was dissociated from virions with chelating agents. However, a substantial proportion of virion-associated annexin II was resistant to chelation, which suggested a calcium-independent interaction between annexin II and an HCMV envelope component. The search for a nonphospholipid component to account for this binding led to the discovery that HCMV glycoprotein B (gpUL55) (gB) can physically interact with annexin II. We present three lines of evidence to support the conclusion that HCMV gB can bind host cell annexin II.  相似文献   

9.
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.  相似文献   

10.
11.
Ye L  Bu Z  Vzorov A  Taylor D  Compans RW  Yang C 《Journal of virology》2004,78(24):13409-13419
The effects of two functional domains, the membrane-proximal YXXPhi motif and the membrane-distal inhibitory sequence in the long cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env), on immunogenicity of the envelope protein were investigated. Genes with codons optimized for mammalian expression were synthesized for the HIV 89.6 Env and a truncated Env with 50 amino acids in the cytoplasmic domain to delete the membrane distal inhibitory sequence for surface expression. Additional genes were generated in which the tyrosine residue in the YXXPhi motif was changed into a serine. Pulse-chase radioactive labeling and immunoprecipitation studies indicated that both domains can mediate endocytosis of the HIV Env, and removal of both domains is required to enhance HIV Env protein surface stability. Analysis of immune responses induced by DNA immunization of mice showed that the DNA construct for the mutant Env exhibiting enhanced surface stability induced significantly higher levels of antibody responses against the HIV Env protein. Our results suggest that the HIV Env cytoplasmic domain may play important roles in virus infection and pathogenesis by modulating its immunogenicity.  相似文献   

12.
Truncated versions of the human cytomegalovirus (CMV) strain Towne glycoprotein B (gB) gene were stably expressed in CHO cell lines. The calcium-specific ionophore A23187 inhibited proteolytic cleavage of C-terminal-truncated gB expressed by cell line 67.77. These inhibition studies also showed that the 93-kilodalton cleavage product most likely represents the N-terminal cleavage fragment of gB. The ionophore carboxyl cyanide m-chlorophenyl-hydrazone was used to show that proteolytic cleavage of gB did not occur in the endoplasmic reticulum. Two-dimensional polyacrylamide gel electrophoresis demonstrated that the N- and C-terminal cleavage products of gB remained associated by disulfide linkages after cleavage. Expression studies using constructs in which 80% or all of the N terminus was deleted demonstrated that the N terminus was required for secretion of the gB molecule. The amino acid sequence at the site of cleavage was shown to be critical for cleavage by a cellular protease. Our results indicate that an arginine-to-threonine change at either amino acid 457 or 460, a lysine-to-glutamine change at amino acid 459, or all three substitutions together block gB cleavage. The effect on proteolysis of the arginine-to-threonine amino acid change at residue 457 (position -4 relative to the cleavage site) demonstrated that a basic pair of amino acids at the endoproteolytic processing site is not the only requirement in cis for gB cleavage.  相似文献   

13.
Experiments were carried out to investigate the ability of rabbit anti-idiotype antibodies (Ab2), directed against an anti-human cytomegalovirus monoclonal antibody (Ab1), to induce neutralizing antibodies specific for the immunodominant glycoprotein B viral complex. Mice immunized with Ab2 produced anti-Ab2 (Ab3) that was both antigen and idiotype specific with regard to Ab1. We conclude that the Ab2 antibodies mimicked a neutralizing epitope and acted as a network antigen for inducing a specific anti-human cytomegalovirus antibody response in this experimental system.  相似文献   

14.
Human antibodies specific for HCMV are currently considered as potential anti-HCMV therapeutic agents. In this study, we used a combinatorial human antibody library to isolate and characterize complete human monoclonal antibodies that effectively neutralize HCMV in a complement-dependent manner. One hundred and six clones were isolated in two independent screens using HCMV virions and recombinant glycoprotein B, gB654, as antigens. All of the clones recognized the same molecule gB and were classified into 14 groups based on the amino acid sequence of the VH region. Seven representative clones from these 14 groups had a strong gB654 binding affinity by surface plasmon resonance (SPR). A pairwise binding competition analysis suggested that there were three groups based on differences in the gB recognition sites. Although Fab fragments of the seven groups showed strong affinity for gB, none of the Fab fragments neutralized HCMV infectivity in vitro. In contrast, complete human IgG1 antibodies of at least three groups neutralized HCMV in a complement-dependent manner. These data suggest that potent therapeutic antibodies can be obtained from a human antibody library, including most of the functional antibodies that mediate humoral immunity to the selected pathogen.  相似文献   

15.
Crump CM  Hung CH  Thomas L  Wan L  Thomas G 《Journal of virology》2003,77(20):11105-11113
The final envelopment of herpesviruses during assembly of new virions is thought to occur by the budding of core viral particles into a late secretory pathway organelle, the trans-Golgi network (TGN), or an associated endosomal compartment. Several herpesvirus envelope glycoproteins have been previously shown to localize to the TGN when expressed independently from other viral proteins. In at least some cases this TGN localization has been shown to be dependent on clusters of acidic residues within their cytoplasmic domains. Similar acidic cluster motifs are found in endogenous membrane proteins that also localize to the TGN. These acidic cluster motifs interact with PACS-1, a connector protein that is required for the trafficking of proteins containing such motifs from endosomes to the TGN. We show here that PACS-1 interacts with the cytoplasmic domain of the HCMV envelope glycoprotein B (gB) and that PACS-1 function is required for normal TGN localization of HCMV gB. Furthermore, inhibition of PACS-1 activity in infected cells leads to a decrease in HCMV titer, whereas an increase in expression of functional PACS-1 leads to an increase in HCMV titer, suggesting that PACS-1 is required for efficient production of HCMV.  相似文献   

16.
Human cytomegalovirus glycoprotein B (gB) is synthesized as a 105-kDa nonglycosylated polypeptide and cotranslationally modified by addition of N-linked oligosaccharides to a 160-kDa precursor in the endoplasmic reticulum (ER). It is then transported to the Golgi complex, where it is endoproteolytically cleaved to form the disulfide-linked mature gp55-116 complex. Pulse-chase experiments demonstrate that the 160-kDa gB precursor was transiently associated with calnexin, a membrane-bound chaperone, in the ER. The association was maximal immediately after synthesis, and they dissociated with a half-time of 15 min. Complete inhibition of binding by tunicamycin or castanospermine indicates the importance of N-linked oligosaccharides for it. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that during an initial stage in the biogenesis, the 160-kDa gB precursor was first synthesized as a fully reduced form and rapidly converted to an oxidized form, with a half-time of 18 min. Both forms of the gB precursor could bind to calnexin. The kinetics of the conversion from the fully reduced to the oxidized form coincided with that of dissociation of the 160-kDa gB precursor from calnexin, suggesting that the two steps are closely related.  相似文献   

17.
The alpha chain of the platelet von Willebrand factor receptor, glycoprotein (GP) Ib, is not known to be phosphorylated. Here, we report that the cytoplasmic domain of GPIbalpha is phosphorylated at Ser(609); this was detected by immunoblotting with an anti-phosphopeptide antibody, anti-pS609, that specifically recognizes the GPIbalpha C-terminal sequence S(606)GHSL(610) only when Ser(609) is phosphorylated. Immunoabsorption with anti-pS609 removed almost all of the GPIbalpha from platelet lysates, indicating a high proportion of GPIbalpha phosphorylation. Anti-pS609 inhibited GPIb-IX binding to the intracellular signaling molecule, 14-3-3zeta. Dephosphorylation of GPIb-IX with potato acid phosphatase inhibited anti-pS609 binding and also 14-3-3zeta binding. A synthetic phosphopeptide corresponding to the GPIbalpha C-terminal sequence (SIRYSGHpSL), but not a nonphosphorylated identical peptide, abolished GPIb-IX binding to 14-3-3zeta. Thus, phosphorylation at Ser(609) of GPIbalpha is important for 14-3-3zeta binding to GPIb-IX. In certain regions of spreading platelets, particularly at the periphery, there was a reduction in GPIbalpha staining by anti-pS609 as observed under a confocal microscope, indicating that a subpopulation of GPIbalpha molecules in these regions is dephosphorylated. These data suggest that phosphorylation and dephosphorylation at Ser(609) of GPIbalpha regulates GPIb-IX interaction with 14-3-3 and may play important roles in the process of platelet adhesion and spreading.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) is a human pathogen of the alphaherpesvirus family which infects and spreads in the nervous system. Glycoproteins play a key role in the process of assembly and maturation of herpesviruses, which is essential for neuroinvasion and transneuronal spread. Glycoprotein B (gB) is a main component of the HSV-1 envelope and is necessary for the production of infectious particles. The cytoplasmic domain of gB, the longest one among HSV-1 glycoproteins, contains several highly conserved peptide sequences homologous to motifs involved in intracellular sorting. To determine the specific roles of these motifs in processing, subcellular localization, and the capacity of HSV-1 gB to complement a gB-null virus, we generated truncated or point mutated forms of a green fluorescent protein (GFP)-tagged gB. GFP-gB with a deletion in the acidic cluster DGDADEDDL (amino acids [aa] 896 to 904) behaved the same as the parental form. Deletion or disruption of the YTQV motif (aa 889 to 892) abolished internalization and reduced complementation by 60%. Disruption of the LL motif (aa 871 to 872) impaired the return of the protein to the trans-Golgi network (TGN) while enhancing its recycling to the plasma membrane. Truncations from residue E 857 abolished transport and processing of the truncated proteins, which had null complementation activity, through the Golgi complex. Altogether, our results favor a model in which HSV-1 gets its final envelope in the TGN, and they suggest that endocytosis, albeit not necessary, might play a role in infectivity.  相似文献   

19.
The genes encoding glycoprotein complexes of human cytomegalovirus are often polymorphic; in particular, glycoprotein B (gB), which is essential for both in vivo and in vitro replication, is encoded by the highly polymorphic gene UL55. In this study, the distribution of gB genotypes was investigated in 44 bronchoalveolar lavage specimens from adult patients positive for human cytomegalovirus DNA by a multiplex nested fast PCR able to amplify 5 gB genotypes (gB1-gB5). The distribution of gB genotypes was as follows: 12 (27.3%) gB1, 11 (25%) gB2, 9 (20.4%) gB3, 4 (9.1%) gB4, 0 gB5, and 8 (18.2%) mixed genotypes. No difference in prevalence was found in relation to clinical features, including immunological status, non-transplant or transplant condition, and type of transplanted organ, or in follow-up specimens; while gB4 and gB3 were shown to be significantly more prevalent in patients with respiratory insufficiency, and gB4 and gB2 in those with pneumonia. The prevalence of gB genotypes in the lower respiratory tract was similar to that previously reported using other specimen types and patients, with gB1 found to be the most prevalent. The association of gB genotypes with specific clinical features should be further investigated.  相似文献   

20.
Herpes simplex virus type 1 glycoprotein B (gB) is essential for virus entry, an event involving fusion of the virus envelope with the cell surface membrane, and virus-induced cell-cell fusion, resulting in polykaryocyte, or syncytium, formation. The experiments described in this report employed a random mutagenesis strategy to develop a more complete genetic map of mutations resulting in the syn mutant phenotype. The results indicate that syn mutations occur within two essential and highly conserved hydrophilic, alpha-helical regions of the gB cytoplasmic domain. Region I is immediately proximal to the transmembrane domain and includes residues R796 to E816/817. Region II is localized centrally in the cytoplasmic domain and includes residues A855 and R858. Positively charged residues were particularly affected in both regions, suggesting that charge interactions may be required to suppress the syn mutant phenotype. No syn mutations were identified within the transmembrane domain. A virus containing a rate of entry (roe) mutation at residue A851, either within or immediately proximal to syn region II, was isolated. Since roe mutations have also been discovered in the external domain of gB, it appears likely that the external and cytoplasmic domains cooperate in virus penetration. Moreover, the observation that both roe and syn mutations occur in the cytoplasmic domain further suggests that gB functions in an analogous manner in both membrane fusion events. It might be predicted from these observations that membrane fusion involves transduction of a fusion signal along the gB molecule through the transmembrane domain. Communication between the external and cytoplasmic domain may thus be required for gB-mediated membrane fusion events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号